LambertW(x,y) Umstellungsbeispiele
Grundregeln:
§A: x * x = x hoch 2 = x² = x^2 = pow(x,2) = e^(log(x)*2)=exp(log(x)*2)
§B: f(x) = e^x = exp(x) ; |
Umkehrfunktion: f -1(x)=log(x) |
§C: f(x) = x * e^x = x*ex; |
Umkehrfunktion: f -1(x)=LambertW(-½±½,±x) |
§D: f(x) = x^n * e^x = xn * ex; |
Umkehrfunktion: f -1(x)=LambertW(-½±½,±(±x)^(1/n)/n)*n; n>1 |
§E: f(x) = x^(1/n) * e^x = x(1/n) * ex; |
Umkehrfunktion: f -1(x)=LambertW(-½±½,±(±x)^n*n)/n; n>1 |
§1 1.5^x
= 2x-1
(3/2)^x=e^(log(3/2)*x)=2x-1 |
|*log(3/2)/2 |
log(3/2)/2*e^(log(3/2)*x)=log(3/2)*x-log(3/2)/2 |
| /(-e^(log(3/2)*x)) |
-log(3/2)/2 = [log(3/2)/2-log(3/2)*x]*e^(-log(3/2)*x) |
|Substitution1: u=-log(3/2)*x |
-log(3/2)/2 = [log(3/2)/2+u]*e^u = log(3/2)/2*e^u + u *e^u |
|*e^[log(3/2)/2] |
-log(3/2)/2*e^[log(3/2)/2] = [log(3/2)/2+u]*e^(log(3/2)/2+u) |
|Subst2: v=log(3/2)/2+u |
-sqrt(3/2)*log(3/2)/2= v*e^v |
| Umkehrfunktion §C |
v=LambertW(-sqrt(3/2)*log(3/2)/2) |
| Rücksubst2 mit v |
log(3/2)/2+u=LambertW(-sqrt(3/2)*log(3/2)/2) |
|- log(3/2)/2 |
u=W(-sqrt(3/2)*log(3/2)/2)-log(3/2)/2 |
|RückSubst.1 mit u |
-log(3/2)*x=LambertW(-sqrt(3/2)*log(3/2)/2)-log(3/2)/2 |
|/(-log(3/2)) |
x1=[log(3/2)/2-LambertW(0,-sqrt(3/2)*log(3/2)/2)]/log(3/2)
x1=1.3721575818167754273229258411755523362909808531253359...
x2=[log(3/2)/2-LambertW(-1,-sqrt(3/2)*log(3/2)/2)]/log(3/2)
x2=5.8420922416969373830452071896430762958177061238753367...
§2 a^x=x^n -> x=-(n*LambertW(-½±½,-(log(a))/n))/(log(a))
Beispiel 1: a=11/10 und n=2
x1=-(2*LambertW( 0,-(log(11/10))/2))/(log(11/10))
=1.0513800237472769373675721833547129751259449698675902...
x2=-(2*LambertW(-1,-(log(11/10))/2))/(log(11/10))
=95.716830168405222740003823032089546239002719059429431...
wegen geradzahligen ganzen Potenz (n mod 2 =0), auch noch +:
x3=-(2*LambertW( 0,+(log(11/10))/2))/(log(11/10))
=-0.95548727594562198165088501460980486941793244835341...
jetzt noch komplexe Anteile:
LambertW(-1,0.0476550899021624300219760616403825461103026826543220)
=-4.864454383150863212294516115508091-3.805445106738860023838468740911048i
x4=-(2*LambertW(-1,(log(11/10))/2))/(log(11/10))=
=-(2*(-4.864454383150863212294516115508091-3.805445106738860023838468740911048i))/(log(11/10))
=102.0762817390074925895879903437157 +79.85390678207872898044462313213559 i
Kontrolle:
(11/10)^(102.0762817390074925895879903437+79.85390678207872898044462313213 i)-(102.0762817390074925895879903437157+79.85390678207872898044462313213559 i)²
=0
§3 x^x=y
x^x=y |
| x. Wurzel |
x=y^(1/x) |
| /x |
1=1/x * y^(1/x) |
| §A und Subst.1 u=1/x |
1= u * e^(log(y) * u) |
| *log(y) |
log(y)=log(y) * u * e^(log(y) * u) |
| subst.2: v= log(y) * u |
log(y)= v * e^v |
| §C |
v=LambertW(log(y)) |
| Rücksubst. 2 mit v → u |
log(y) * u = LambertW(log(y)) |
| Rücksubst 1 mit u → x |
log(y) * 1/x = LambertW(log(y)) |
| *x/LambertW |
x = log(y) / LambertW(-½ ± ½,log(y))
§4 log(2x-1)*(1-2x)=2x
0=2x+log(2x-1)*(2x-1) |
| -1 |
-1=(2x-1)+log(2x-1)*(2x-1) |
| Subst1: u=2x-1 und Exponentialfunktion |
exp((-1-u)/u)=u |
|*(-1/u) |
e^(-1/u-1)*(-1/u)=-1 |
| *e^1 |
e^(-1/u)*(-1/u)= -e |
| Subst2: v=-1/u und §C |
v=LambertW(-e) |
| Rücksubst. 2 mit v → u |
u=-1/LambertW(-e) |
| Rücksubst 1 mit u → x |
2x-1=-1/LambertW(-e) |
| +1 dann /2 |
x=(1-1/LambertW( - ½± ½,-e))/2 |
|
X1= 0.44111161967499482446076447024089... +0.26660525097138465444099823482124... i
x2= 0.44111161967499482446076447024089... -0.26660525097138465444099823482124... i
§5
e^(a*x) = b*x + c
e^(a*x)=b*x+c |
|/e^(a*x) |
1=(b*x+c)*e^(-a*x) |
| *(-a/b) |
-a/b=(-a*x-a*c/b)*e^(-a*x) |
| /e^(a*c/b) |
-a/[b*e^(a*c/b)]=(-a*x-a*c/b)*e^(-a*x-a*c/b) |
|Substitution: u=-a*x-a*c/b |
-a/[b*e^(a*c/b)]=u*e^u |
|Umkehrfunktion §C |
u=LambertW(-½ ± ½ ,-a/[b*e^(a*c/b)]) |
| RückSubst. mit u |
-a*x-a*c/b=LambertW(-½ ± ½ ,-a/[b*e^(a*c/b)]) |
| +a*c/b |
-a*x=W(...)+a*c/b |
| /(-a) |
x=-LambertW(-½ ± ½ , -a/[b*e^(a*c/b)]) /a - c/b |
|
§6
e^(a*x+p)*x^h = b
§7
x^a = b*log(x)
§8
(x+a)* b^x = c
§9
ln(a*x + b)+c*x/(a*x+b)=0
Rechner mit LambertW/Polylog | Nachkommastellen | W(x) | W(n,y) | komplex | kostenlos online | |
Umkehrfunktionen Rechner | 32...34 | v | v | v | v | |
WolframAlpha | 6...3600 | v | v | v | v | |
HP‐41Z | 3…9 | v | v | |||
HP 49/50 | v | |||||
HP WP 34S | v | |||||
Hp 5971 ? |
zurück zum Umkehrfunktionen Rechner: http://www.lamprechts.de/gerd/php/RechnerMitUmkehrfunktion.php