Mathematische Konstanten online per hypergeometrischer Funktion berechnen (Dank an Xavier Gourdon und Pascal Sebah); Erklärungen unten |
A060196 = 1 + 1/(1*3) + 1/(1*3*5) + 1/(1*3*5*7) + ... = Hypergeometric1F1[1,3/2,1/2] = Sqrt[E*Pi/2] * Erf[1/Sqrt[2]]; y-cruncher10^9 digits in 14 s
A103710/√8=(Sqrt[2]+Log[1+Sqrt[2]])/Sqrt[8]=(2+sqrt(2) log(1+sqrt(2)))/4
A196525 = Log[1+√2]/√2
A248682 = 4/3+8*Pi/Sqrt[243] = Sum[(Floor[n/2])!^2/n!, {n, 0,inf}]=(Hypergeometric2F1[1,1,3/2,1/4]+1)*4/3=2*Hypergeometric2F1[1,2,3/2,1/4]
A248897 = 4*asin(1/2)/Sqrt[3] = sqrt(12)Pi/9 = Hypergeometric2F1[1,1,3/2,1/4] = Sum[2/(n*Binomial[2 n,n]),{n,1,Infinity}]=Integrate[x/(1+x^3),{x,0,Infinity}]