132 Algorithmen (Bildungsgesetz) für die Zahlenfolge 0,0,0,1,0,0,1,1,0,1,1,1 |
Fortsetzung von https://matheplanet.com/matheplanet/nuke/html/viewtopic.php?topic=250293&start=40 | |||||||
Primitive Algorithmen mit If, oder direkter Binärumwandlung oder ohne Fortsetzung | |||||||
Algor. | Beschreibung | Link zum Nachrechnen | Folge | ||||
1 | pzktupel: aB[i]=i<6?((i+1)%6==4?1:0):((12-i)%6==4?0:1); | Iterationsrechner mit Code | 0,0,0,1,0,0,1,1,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 | ||||
11 | tactac Haskell: map snd $ tail $ iterate ((`divMod`2).fst) (3784,undefined) aB[i]=(3784).toString(2).substr(11-i,1); oder b=3784*2;aB[i]=(b>>=1)&1; |
Iterationsrechner mit Code | 0,0,0,1,0,0,1,1,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 | ||||
15 | Scynja: aB[i]=floor((100110111%pow(10,(12-i)))/pow(10,(11-i))) | Iterationsrechner mit Code | 0,0,0,1,0,0,1,1,0,1,1,1,0,9,9,9,0,0,0,0,7,7,5,6,5,8,9,7,9,7 | ||||
48 | pzktupel: a=311; Iter: aC[i]=a%2;a=floor(a/2);aB[11-i]=aC[i]; | Iterationsrechner mit Code | 0,0,0,1,0,0,1,1,0,1,1,1 | ||||
Interpolationen: Polynom, Trigonometrische I. | |||||||
2 | https://de.wikipedia.org/wiki/Polynominterpolation (x-8)*(x-5)*(x-4)*(x-2)*(x-1)*x*(x*(x*(x*(39*x*(2*x-81)+51845)-439475)+1966617)-3772746)/39916800 |
Iterationsrechner mit Code | 0,0,0,1,0,0,1,1,0,1,1,1,254,2509,14170,59423,204920,613054,1643798,4037177,9223436,19827678,40461071 | ||||
3 | 1/2-cos(PI*x/6)/12-(2+sqrt(3))/12*sin(PI*x/6)-cos(PI*x/3)/12-sin(PI*x/3)/(4*sqrt(3))-cos(PI*x/2)/3-sin(PI*x/2)/3+cos(PI*x*4/6)/4+sin(PI*x*4/6)/(4*sqrt(3))-cos(PI*x*5/6)/12-(2-sqrt(3))/12*sin(PI*x*5/6)-cos(PI*x)/6 | Iterationsrechner mit Code | 0,0,0,1,0,0,1,1,0,1,1,1,0,0,0,1,0,0,1,1,0,1,1,1,0,0,0,1,0,0 | ||||
12 | sgn(|x*(x*(x*(x*((x-20)*x+145)-470)+664)-380)/60+x|) | Iterationsrechner mit Code | 0,0,0,1,0,0,1,1,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 | ||||
13 | sgn(|x*(x*(x*(x*((x-20)*x+145)-470)+664)-260)/60-x|) | Iterationsrechner mit Code | 0,0,0,1,0,0,1,1,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 | ||||
Algorithmen mit Modulofunktion (Divisionsrest) | |||||||
10 | viertel: aB[i]=floor((pow(2,floor(i/4)+1)-1)/pow(2,3-(i%4)))%2; | Iterationsrechner mit 2 Beispielen | 0,0,0,1,0,0,1,1,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 | ||||
22 | cramilu: aB[i]=sgn(139230%(i+13)) | Iterationsrechner mit Code | 0,0,0,1,0,0,1,1,0,1,1,1,1,0,1,1,1,0,1,1,1,0,0,1,1,1,0,1,1,0 | ||||
30 | cramilu: aB[i]=1-sgn(((i+1)%4)*((i+1)%7)*((i+1)%10)*((i+1)%11)) | Iterationsrechner mit Code | 0,0,0,1,0,0,1,1,0,1,1,1,0,1,0,1,0,0,0,1,1,1,0,1,0,0,0,1,0,1 | ||||
67 | bigc(): (13923^11*10)mod(i+13) | Iterationsrechner mit Code | 0,0,0,1,0,0,1,1,0,1,1,1,1,0,0,1,1,0,1,1,1,0,0,1,1,1,0,1,1,0,1,1,0,1,1,1,0,1,0,1,1,0,1,1 | ||||
Algorithmen mit https://de.wikipedia.org/wiki/Alias-Effekt | |||||||
4 | aB[i]=floor(sin((i+133)*E*17)*101+101)%2; | Iterationsrechner mit Code | 0,0,0,1,0,0,1,1,0,1,1,1,1,0,1,0,0,1,0,1,1,1,1,1,0,1,1,0,1,1 | ||||
61 | Table[Mod[Floor[Exp[x]],2],{x,403,444}] | wolframalpha.com/input/? | 0,0,0,1,0,0,1,1,0,1,1,1,0,1,0,0,1,0,0,1,1,1,0,0,0,1,0,0,1,1,0,1,0,0,1,0,0,1,1,0,1 | ||||
62 | Table[Mod[Round[Sqrt[x*E*701]*501+1],2],{x,954,999}] | WolframAlpha.com | 0,0,0,1,0,0,1,1,0,1,1,1,1,1,0,0,1,0,1,1,0,0,0,0,0,1,1,0,1,0,0,1,1,1,1,1,1,0,0,1 | ||||
63 | Table[Mod[Round[[x*E]^2*501],2],{x,97,129}] | WolframAlpha.com | 0,0,0,1,0,0,1,1,0,1,1,1,1,1,1,0,0,1,0,1,1,0,0,0,0,0,0,1,1,0,1,0,1 | ||||
68 | Table[Mod[Ceiling[Sin[n/E]*91-Sin[n*Pi]*11]+100,2],{n,179,222}] | WolframAlpha.com | 0,0,0,1,0,0,1,1,0,1,1,1,0,1,1,1,0,0,1,0,0,0,0,0,1,1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,1 | ||||
106 | Table[Mod[Round[ArcTan[(((50-x)/11) 2)/(1.0000001-((50-x)/11)^2)]*129],2],{x,28,70}] | WolframAlpha.com mit Code |
0,0,0,1,0,0,1,1,0,1,1,1,0,1,0,0,1,0,0,1,0,1,0,1,0,1,0,0,1,0,0,1,0,1,1,1,0,1,1,0,0,1,0 | ||||
Algorithmen mit Rekursionen | |||||||
17 | tactac: Fx(x): x<3?0:(x==3?1:max(Fx(x-3),Fx(x-4))) | Iterationsrechner mit Code | 0,0,0,1,0,0,1,1,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 | ||||
16 | haegar90: aB=Array(0,0,0,0,0,0,1);i=7; Iter:
aB[i]=aB[i-4]+aB[i-3]-aB[i-7]; besser A008679[i]=1+floor((i-3)/3)+floor((3-i)/4); |
Iterationsrechner mit Code | 0,0,0,0,0,0,1,0,0,1,1,0,1,1,1,1,1,1,2,1,1,2,2,1,2,2,2,2,2,2,3,2,2,3 0,0,0,1,0,0,1,1,0,1,1,1,1,1,1,2,1,1,2,2,1,2,2,2,2,2,2,3,2,2 |
||||
110 | analog zur Primzahlerzeugenden Konstante A249270 kann man auch so eine Konstante für die gesuchte Zahlenfolge kontruieren: a[0]=34010569 Pi/27899537;Table[a[k]=Floor[a[k-1]]*(FractionalPart[a[k-1]]+1),{k,1,40}];Table[b[k]=Floor[a[k]]-2*k-3,{k,0,39}] |
Iterationsrechner mit Code |
0,0,0,1,0,0,1,1,0,1,1,1,0,-1,21,58,116,211,326,597,859,1533,2043,2880,3076,3482,5422 | ||||
111 | a[0]=0;co=CoefficientList[Series[1/Cyclotomic[231,x],{x,0,200}],x];Table[a[k]=a[k-1]+co[[k+11]],{k,1,66}] | Mathematica | 0,0,0,1,0,0,1,1,0,1,1,1,1,1,2,1,1,2,2,1,2,2,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 | ||||
Algorithmen mit Näherungsfunktion (auch Regression) | |||||||
14 | cramilu: aB[i]=floor(0.6+(c=417690/(i+13))-floor(c)); aC[i]=floor(0.6+(c=417690/(i+13))+floor(c))%2; | Iterationsrechner mit Code | 0,0,0,1,0,0,1,1,0,1,1,1,1,0,0,1,0,0,1,1,0,0,0,1,1,1,0,0,1,0 | ||||
28 | floor(4-pow(x-3,4)/(pow(x-3,4)+1e-3)-2*pow(x-6.5,6)/(pow(x-6.5,6)+2e-2)+atan((x-8.5)*17)/3) | Iterationsrechner mit Code | 0,0,0,1,0,0,1,1,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 | ||||
Algorithmen mit Pseudozufallsgeneratoren und anderen Iterationen (Fraktale) | |||||||
23 | a=630360016;b=1626622747;c=2147483647; Iter: b=(b*a)%c;aB[i]=b%2; | Iterationsrechner mit Code | 0,0,0,1,0,0,1,1,0,1,1,1,1,0,1,0,0,1,1,1,1,0,1,1,1,1,1,1,1,1 | ||||
39 | Drop[Mod[MandelbrotSetIterationCount[Table[-0.019+0.0000015+I*(y-0.00016),{y,-0.6474,-0.6451,0.0000087}],MaxIterations->1500]+1,2],208] | Mathematica |
0,0,0,1,0,0,1,1,0,1,1,1,0,1,0,0,0,0,1,1,0,1,0,0,0,1,1,1,1,0,0,1,1,1,1,1,0,0,0,0,0,1,1,0,0,0,0,0,1,0 | ||||
46 | Lorenz-Attraktor ab Iteration 138 | Iterationsrechner mit Code |
0,0,0,1,0,0,1,1,0,1,1,1,1,1,1,0,0,1,0,0,1,1,1,1,0,0,1,0,1,1 | ||||
49 | gonz: aD[0]=6608; Iter: Iter(1,aD[0],0,'false','x=x%2<1?x/2:(x*3+1)/2;','aD[0]=x')%2 | 0,0,0,1,0,0,1,1,0,1,1,1,1,0,1,0,0,1,1,1,0,1,1,0,1,1,1,1,1,1 | |||||
51 | Drop[Mod[JuliaSetIterationCount[0.365-0.37I,Table[x+I*(-0.5),{x,0.19909,0.20619,0.00001}], MaxIterations->5000]+1,2],675] | . |
0,0,0,1,0,0,1,1,0,1,1,1,0,1,0,1,0,0,0,1,1,0,1,0,0,1,1,0,1,1,1,1,0,1,0,0 | ||||
58 | a='218019'; Iter: aB[i]=(Number(a)+1)%2;a='2'+((i+37)*5).toString()+QuerSum(a).toString(); | 0,0,0,1,0,0,1,1,0,1,1,1,0,1,1,1,0,0,0,0,0,1,0,1,0,1,0,1,1,1,0 | |||||
Algorithmen mit Kettenbruch und (CoefficientList, Series) | |||||||
31 | Table[Abs[SeriesCoefficient[QPochhammer[-x,x^2] EllipticTheta[3,0,-x^4],{x,0,n}]],{n,26,88}] | 0,0,0,1,0,0,1,1,0,1,1,1,1,1,0,1,0,1,1,0,0,0,1,1,0,1,1,1,1,0,1,0,0,0,1,1,0,1,2,2,0 | |||||
35 | Drop[CoefficientList[Series[1/((1-x^4)(1-x^7)(1-x^10)),{x,0,90}],x],1] | 0,0,0,1,0,0,1,1,0,1,1,1,0,2,1,1,1,2,1,2,2,2,1,3,2,2,2,4,2,3,3,4,2,4,4,4,3,5,4,5,4,6,4,6,5,6,5,7,6,7 | |||||
36 | Drop[CoefficientList[Series[Product[1+x^(4i-1),{i,6}]*(1+x^13),{x,0,100}],x],4] | 0,0,0,1,0,0,1,1,0,1,1,1,1,0,2,1,1,1,2,2,1,1,3,1,1,2,2,2,1,3,3,2,2,3,2,3,1,3,3,2,2,3,3,2,2,3,3,1,3,2 | |||||
37 | Table[Abs[SeriesCoefficient[Product[(1+x^k) (1-x^(2 k))/(1+x^(4 k)),{k,n}],{x,0,n}]],{n,26,55}] | 0,0,0,1,0,0,1,1,0,1,1,1,1,1,0,1,0,1,1,0,0,0,1,1,0,1,1,1,1,0 | |||||
43 | ContinuedFraction[(7/9) Pi ArcCos[2632933/3796265]^2,40]-1 | www.wolframalpha.com/input/? | 0,0,0,1,0,0,1,1,0,1,1,1,0,1,0,1,0,0,1,1,1,1,0,1,0,0,7,0,0,3,0,1,4,1,0,0,0,0,6,0 | ||||
59 | ContinuedFraction[784/(81(5+81(Chaitin's Constant)))-11/81,16]-1 | 0,0,0,1,0,0,1,1,0,1,1,1,0,1,0,1 | |||||
60 | ContinuedFraction[(3(47(1+sqrt(2))-100))/(11(1+sqrt(2))-1),29]-1 | 0,0,0,1,0,0,1,1,0,1,1,1,0,1,0,1,0,1,1,0,0,2,77,0,2,0,3,3,1 | |||||
Algorithmen mit höheren Funktionen und Primzahlen | |||||||
5 | aB[i]=1-((Prime(i+990)+1)/2%2); | 0,0,0,1,0,0,1,1,0,1,1,1,0,0,0,1,1,0,0,1,0,1,0,1,0,0,1,0,0,0 | |||||
8 | Table[ Mod[ PartitionsP[n], 2], {n, 26,69,1}] | 0,0,0,1,0,0,1,1,0,1,1,1,1,1,0,1,0,1,1,0,0,0,1,1,0,1,1,1,1,0,1,0,0,0,1,1,0,1,0,0,0,1,1,1 | |||||
9 | Pari:A309144(n)=ellanalyticrank(ellinit([0,n^2+6*n-3,0,-16*n,0]))[1] | https://pari.math.u-bordeaux.fr/gp.html | 0,0,0,1,0,0,1,1,0,1,1,1,0,0,0,1,0,1,1,2,0,1,0,1,0,1,2,0,1,0,0,0,0 | ||||
18 | Table[Abs[MoebiusMu[n]], {n, 2056, 2088}] | 0,0,0,1,0,0,1,1,0,1,1,1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,1,1,0,1,1,1,0 | |||||
19 | Table[(LiouvilleLambda[n]+1)/2, {n, 112,139}] | 0,0,0,1,0,0,1,1,0,1,1,1,0,0,1,0,0,1,0,0,1,1,1,1,1,0,0,0 | |||||
20 | Table[1 - Mod[Abs[Round[Gamma[Pi/1117-n/200] 121]],2],{n,69,99}] | 0,0,0,1,0,0,1,1,0,1,1,1,1,0,1,1,1,1,0,1,1,0,1,0,1,1,0,1,1,0,0 | |||||
32 | Table[Mod[Round[AppellF1[Pi/10,Pi/11,Pi/12,13+n,1/(3+n),1/(2+n)]*3^17],2],{n,157,200}] | 0,0,0,1,0,0,1,1,0,1,1,1,0,0,1,1,1,0,0,1,0,1,0,1,1,0,0,1,1,1,1,1,1,1,0,0,0,1,0,0,1,0,1,0 | |||||
34 | Table[Mod[Abs[StirlingS2[2*n,n]]+Ceiling[Cos[n*E+1]*191+18],2],{n,951,977}] | 0,0,0,1,0,0,1,1,0,1,1,1,0,1,0,1,0,1,1,1,1,0,1,1,0,1,1 | |||||
38 | Table[c=0;Do[If[!PrimeQ[i]&& !PrimeQ[2n-i],c++],{i,1,n,2}];c,{n,2,30}] | 0,0,0,1,0,0,1,1,0,1,1,1,1,2,0,2,3,0,2,3,1,2,3,3,2,4,2,3,5 | |||||
40 | Drop[RealDigits[ChampernowneNumber[10],2,115][[1]],87] | 0,0,0,1,0,0,1,1,0,1,1,1,0,1,0,0,0,0,0,0,1,1,1,1,1,1,1,1 | |||||
44 | Drop[Mod[Round[FourierDCT[Table[(1-(x-3)^4/((x-3)^4+1/1000))*3^11,{x,1,177}],3]+800],2],87] | 0,0,0,1,0,0,1,1,0,1,1,1,1,1,0,0,0,1,1,0,1,1,0,1,0,0,1,0,1,0,1,1,0,1,1 | |||||
45 | Table[Sign[Mod[Round[CatalanNumber[n]*E/17],4]],{n,403,444}] | 0,0,0,1,0,0,1,1,0,1,1,1,1,1,1,1,1,1,0,0,1,0,1,1,1,0,0,1,1,1,1,1,1,1,1,1,1,1,0,1,1,0 | |||||
47 | Drop[Mod[RealDigits[Hypergeometric2F1[1/3, 1/4,3^7/17, 1/7],10,911][[1]],2],887] | 0,0,0,1,0,0,1,1,0,1,1,1,0,0,1,1,0,0,1,1,0,1,0,0 | |||||
52 | aB[i]=3070201610190%Prime(i+1); | 0,0,0,1,0,0,1,1,0,1,1,1,8,12,32,39,56,33 | |||||
54 | Table[1-Sign[Mod[Abs[BernoulliB[n 2] (n 2+1)!]/2,n^2+2]],{n,576,613}] | 0,0,0,1,0,0,1,1,0,1,1,1,0,0,1,1,0,1,0,0,1,0,0,1,0,0,1,0 | |||||
55 | Table[Sign[Floor[Mod[Fibonacci[n],n+1]/9]],{n,70,99}] | 0,0,0,1,0,0,1,1,0,1,1,1,0,1,0,1,1,0,0,1,1,0,1,0,1,0,0,1,1,1 | |||||
56 | Table[1 - Sign[Floor[Mod[CatalanNumber[n],n]/9]],{n,115,144}] | 0,0,0,1,0,0,1,1,0,1,1,1,1,0,0,0,1,0,0,1,0,0,1,0,1,1,0,1,0,0 | |||||
66 | Table[Mod[CarmichaelLambda[n]/2+n+1,2],{n,977,1009}] | 0,0,0,1,0,0,1,1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0 | |||||
69 | Table[Mod[Floor[ArithmeticGeometricMean[1-1/x,1+x]*10³],2],{x,157,200}] | WolframAlpha | 0,0,0,1,0,0,1,1,0,1,1,1,1,1,1,0,0,1,0,1,0,1,0,0,0,1,1,1,0,0,1,1,0,1,0,1,0,0,1,1,1 | ||||
70 | Table[Mod[Ceiling[Abs[EllipticNomeQ[n]]*E^(E*7)],2],{n,86,120}] | WolframAlpha | 0,0,0,1,0,0,1,1,0,1,1,1,1,1,1,1,1,1,1,1,0,0,0,1,0,1,1,1,1,1,0,1,0,0,1 | ||||
71 | Table[Mod[Round[EulerE[n,n*E]*15/n],2],{n,274,311}] | WolframAlpha | 0,0,0,1,0,0,1,1,0,1,1,1,1,1,0,1,1,1,1,0,0,0,0,0,1,0,1,0,1,1,0,0,0,1,1,0,0,0 | ||||
72 | Table[Mod[Round[FresnelC[n/E]*Pi*9133],2],{n,16,49}] | WolframAlpha | 0,0,0,1,0,0,1,1,0,1,1,1,1,1,0,1,0,1,0,0,0,1,0,0,1,0,1,1,1,0,0,1,0,1 | ||||
73 | Table[Sign[((GCD[n+13000,33426748355]+1)/2-1)*(PowerMod[2,n,n+1]-1)],{n,598,633}] | WolframAlpha | 0,0,0,1,0,0,1,1,0,1,1,1,1,1,0,0,0,1,0,1,0,0,1,0,1,1,1,1,0,0,0,1,0,0,0,0 | ||||
74 | Table[Sign[Mod[PartitionsQ[n],3]],{n,805,888,2}] | WolframAlpha | 0,0,0,1,0,0,1,1,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,1,0,0,1,1,0,0,1,1,0,0,0,1,0,0,1 | ||||
75 | Table[Sign[Floor[Mod[LucasL[n],n+72]/13]],{n,67,111}] | WolframAlpha | 0,0,0,1,0,0,1,1,0,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,1,1,1,1,1,0,1 | ||||
76 | Take[SubstitutionSystem[{0->{0,1,0,0},1->{1,1,0,1}},{0},4]//Last,{11,55}] | Mathematica 11 | 0,0,0,1,0,0,1,1,0,1,1,1,0,1,0,1,0,0,1,1,0,1,0,1,0,0,1,1,0,1,0,1,0,0,0,1,0,0,0,1,0,0,1,1,0 | ||||
77 | Table[1-Sign[Mod[PrimePi[n 23],3]],{n,16,55}] | www.wolframalpha.com/input/? | 0,0,0,1,0,0,1,1,0,1,1,1,1,0,0,0,0,0,0,0,1,0,1,0,0,0,1,0,0,1,1,1,0,0,1,0,0,0,0,0 | ||||
78 | Table[Mod[Floor[3^9/(HypergeometricU[1/3,1/(2*n),1/(3*n)]-11/10)],2],{n,2431,3000,13}] | www.wolframalpha.com/input/? | 0,0,0,1,0,0,1,1,0,1,1,1,1,1,1,1,1,0,1,1,0,1,1,1,0,0,0,1,0,0,1,0,1,1,0,1,1,1,0,1,0,0,1,0 | ||||
79 | Table[Mod[Round[(1-(4/9)^(n+1)) Sqrt[3] (7^n/20)],2],{n,185,222}] | Koch-Kurven Fläche wolframalpha | 0,0,0,1,0,0,1,1,0,1,1,1,0,1,0,1,1,1,1,1,1,0,0,1,0,0,1,1,1,1,0,0,1,1,0,0,0,1 | ||||
80 | f[n_]:=FindSequenceFunction[Table[RegionMeasure[SierpinskiCurve[k]],{k,5}],n];Table[Mod[Round[f[n]*39],2],{n,70,99}] | Sierpinski curve Mathematica 11 |
0,0,0,1,0,0,1,1,0,1,1,1,0,1,0,0,1,1,1,1,0,1,1,0,1,0,0,1,0,1 | ||||
81 | Table[Mod[Round[Abs[ZetaZero[n]]*30],2],{n,57,90}] | Riemannsche Vermutung wolframalpha | 0,0,0,1,0,0,1,1,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,0,1,0,0,1,1,1,0,0,1,0 | ||||
82 | Table[Mod[Round[Abs[AiryBiPrime[n-13/3]]*12],2],{n,44,90}] | wolframalpha | 0,0,0,1,0,0,1,1,0,1,1,1,1,0,0,0,0,0,0,1,1,1,1,0,0,1,0,1,0,1,1,1,0,1,0,0,0,0,0,1,0,1,1,1,0,0,0 | ||||
83 | Flatten[Table[Take[IntegerDigits[x^2+x+17,2],-4],{x,0,11}] ] | Mathematica 11 | 0,0,0,1,0,0,1,1,0,1,1,1,1,1,0,1,0,1,0,1,1,1,1,1,1,0,1,1,1,0,0,1,1,0,0,1,1,0,1,1,1,1,1,1,0,1,0,1 | ||||
84 | Take[1-Flatten[CellularAutomaton[30,{{1},0},50]],{955,1000}] | Mathematica 11 | 0,0,0,1,0,0,1,1,0,1,1,1,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 | ||||
85 | Take[IntegerDigits[BitXor[Floor[Pi*10^99],Floor[E*10^(114)]],2],{147,188}] | Pi XOR E -> bin; Mathematica 11 | 0,0,0,1,0,0,1,1,0,1,1,1,1,1,0,1,0,0,0,1,1,0,1,1,0,0,1,0,1,1,1,0,1,1,0,1,1,0,0,0,0,1 | ||||
86 | Take[IntegerDigits[BitOr[Floor[Pi*10^115],Floor[E*10^99]],2],{43,80}] | Pi OR E -> bin; Mathematica 11 | 0,0,0,1,0,0,1,1,0,1,1,1,0,1,1,1,1,1,1,1,1,1,1,0,1,1,1,1,0,1,1,1,1,1,1,0,1,0 | ||||
87 | Take[IntegerDigits[BitAnd[Floor[Pi*10^(122)],Floor[EulerGamma*10^(153)]],2],{303,340}] | Pi AND EulerGamma; Mathematica 11 | 0,0,0,1,0,0,1,1,0,1,1,1,0,0,0,0,0,1,0,1,0,0,0,0,1,0,0,1,1,0,0,0,0,0,1,0,0,0 | ||||
88 | Mathematica 12: Take[Mod[Round[(Flatten[BeveledPolyhedron[Dodecahedron[]][[1]]]+2)*841],2],{164,199}] |
0,0,0,1,0,0,1,1,0,1,1,1,1,0,0,1,0,1,0,0,1,1,0,0,1,0,1,1,0,0,1,1,0,1,1,0 | |||||
89 | Mathematica 12: a=TruncatedPolyhedron[Dodecahedron[]]; Take[Mod[Round[(Flatten[a[[1]]]+2)*294],2],{3,40}] |
0,0,0,1,0,0,1,1,0,1,1,1,1,1,1,1,0,1,0,0,0,1,0,0,1,1,0,1,0,0,1,1,1,1,1,1,1,0 | |||||
90 | Mathematica 12: a=AugmentedPolyhedron[Dodecahedron[]]; Take[Mod[Floor[(Flatten[a[[1]]]+2)*1238],2] ,{20,50}] |
0,0,0,1,0,0,1,1,0,1,1,1,1,0,1,1,0,1,0,1,1,0,0,1,1,0,0,0,0,1,0 | |||||
91 | Take[IntegerDigits[Hash[ByteArray[Table[n*14,{n,10}]],"SHA256"],2],{146,180}] | Mathematica 11 | 0,0,0,1,0,0,1,1,0,1,1,1,0,1,1,0,1,1,1,1,1,0,0,1,1,0,1,0,0,0,1,1,0,0,1 | ||||
92 | Take[IntegerDigits[Hash[ByteArray[Table[n+64,{n,10}]],"SHA256SHA256"],2],{63,100}] | Mathematica 11 | 0,0,0,1,0,0,1,1,0,1,1,1,1,0,1,0,0,0,1,0,1,1,1,1,0,0,1,0,1,0,1,1,0,0,1,1,1,0 | ||||
93 | Take[IntegerDigits[Hash[ByteArray[Table[n+118,{n,10}]],"SHA384"],2],{42,80}] | Mathematica 12 | 0,0,0,1,0,0,1,1,0,1,1,1,0,0,0,1,0,0,0,1,1,0,0,0,1,1,0,1,0,1,0,0,1,0,0,1,0,0,1 | ||||
94 | Take[IntegerDigits[Hash[ByteArray[Table[n+32,{n,10}]],"SHA512"],2],{66,99}] | Mathematica 12 | 0,0,0,1,0,0,1,1,0,1,1,1,1,0,0,1,0,1,0,1,1,1,1,0,1,0,0,1,0,1,1,1,0,1 | ||||
95 | Take[IntegerDigits[Hash[ByteArray[Table[n+40,{n,10}]],"SHA3-256"],2],{197,233}] | Mathematica 12 | 0,0,0,1,0,0,1,1,0,1,1,1,1,0,1,1,1,0,0,1,0,0,1,1,1,0,1,0,1,1,1,1,0,1,1,0,1 | ||||
96 | Take[IntegerDigits[Hash[ByteArray[Table[n+13,{n,10}]],"Keccak256"],2],{53,90}] | Mathematica 12 | 0,0,0,1,0,0,1,1,0,1,1,1,1,1,0,1,0,0,0,0,0,1,0,0,1,1,1,1,0,1,1,1,0,0,1,1,0,1 | ||||
97 | Take[RealDigits[GoldenRatio*395,3,777][[1]],{527,569}] | Goldener Schnitt Basis 3; Mathematica 11 | 0,0,0,1,0,0,1,1,0,1,1,1,2,0,1,1,1,2,2,2,2,0,1,1,1,2,1,0,0,2,2,0,2,1,0,0,1,0,1,1,2,0,0 | ||||
98 | Take[RealDigits[Zeta[5]*4142,4,444][[1]],{308,350}] | Zeta(5) Basis 4; Mathematica 11 | 0,0,0,1,0,0,1,1,0,1,1,1,3,1,2,2,3,3,3,0,3,1,1,0,3,2,3,0,2,2,1,0,0,3,0,3,3,0,0,2,2,2,2 | ||||
99 | Take[RealDigits[(8*Pi-18*ArcCos[1/3])*39369,5,900][[1]],{842,880}] | Reuleaux Tetrahedron Fläche Basis 5 | 0,0,0,1,0,0,1,1,0,1,1,1,4,1,0,4,0,4,4,1,3,3,3,1,1,4,2,3,4,4,1,2,1,3,3,1,2,4,1 | ||||
100 | Take[RealDigits[Gamma[1/3]*Gamma[5/6]/Gamma[1/6]*444561,6,1070][[1]],{1005,1046}] | A081760=Landau's const. Basis 6 | 0,0,0,1,0,0,1,1,0,1,1,1,2,4,5,5,5,3,3,3,3,4,0,0,0,4,0,0,5,2,5,1,3,3,2,0,4,4,5,5,0,4 | ||||
101 | Table[Mod[Floor[CDF[HypergeometricDistribution[10,50,100],x]*(E+1789)],2],{x,33}] | kum. hypergeometrische Verteilungsfunkt. | 0,0,0,1,0,0,1,1,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 | ||||
102 | Table[Mod[Floor[CDF[BinomialDistribution[40,27/100],x]*(E+1798)],2],{x,4,33}] | kumulierte Binomialverteilungsfunktion | 0,0,0,1,0,0,1,1,0,1,1,1,0,1,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 | ||||
103 | haribo's Idee: Alph01=morseAlphabet={"._","_...",...;StringReplace[morseAlphabet,{"."->"0","_"->"1"}]; ToCharacterCode[StringJoin[Characters["IRWAM"]/.Thread[Table [FromCharacterCode[k+64],{k,26}]->Alph01]]]-48 |
Mathematica morse-code | 0,0,0,1,0,0,1,1,0,1,1,1 |
||||
104 | Table[Mod[Round[Abs[MeijerG[{{},{(3+x)/2,(4+x)/2}},{{1,1,3/2},{1/2}},x^2/16]]*1000119],2],{x,8/10,6,1/10}] | MeijerG Funktion | 0,0,0,1,0,0,1,1,0,1,1,1,0,0,0,1,1,0,1,0,0,1,0,0,1,1,1,0,0,1,1,1,0,0,0,1,1,0,0,0,1,0,1,0,0,0,1,1,1,0 | ||||
105 | Take[Flatten[Table[Boole[!CoprimeQ[i,j,77]],{i,99},{j,99}]],{488,533}] | Teilerfremdheit als 3D-Würfel |
0,0,0,1,0,0,1,1,0,1,1,1,0,1,1,1,1,1,1,1,0,1,1,1,0,1,0,1,1,1,0,1,0,1,1,1,0,1,0,1,1,1,1,1,0,1 |
||||
107 | Take[ShiftRegisterSequence[{12,{2,1}}],{1496,1540}] | Mathematica | 0,0,0,1,0,0,1,1,0,1,1,1,0,0,1,1,0,1,0,1,1,0,0,1,0,1,0,1,1,1,1,0,1,0,1,1,1,1,1,0,0,0,1,1,1 | ||||
108 | Take[DeBruijnSequence[{0,1},12],{1662,1711}] | Mathematica | 0,0,0,1,0,0,1,1,0,1,1,1,0,0,0,1,0,0,1,1,1,0,0,1,0,0,0,1,0,0,1,1,1,0,1,1,0,0,0,1,0,0,1,1,1,1,0,1,0,0 | ||||
109 | Take[Flatten[Tuples[{0,1},11]],{3421,3466}] | Mathematica | 0,0,0,1,0,0,1,1,0,1,1,1,0,0,1,0,0,1,1,1,0,0,0,0,0,1,0,0,1,1,1,0,0,1,0,0,1,0,0,1,1,1,0,1,0,0 | ||||
112 | atomicRadiusData=DeleteMissing[EntityValue[Take[EntityList["Element"],{1,54}],{EntityProperty["Element","AtomicNumber"],EntityProperty["Element", "AtomicRadius"]},"EntityAssociation"]]; Table[Mod[Round[atomicRadiusData[[k]][[2]][[1]]*E*227],2],{k,8,54}] |
Mathematica: Atomradien | 0,0,0,1,0,0,1,1,0,1,1,1,0,1,1,0,0,1,0,0,0,0,1,1,1,0,0,1,0,0,0,1,0,0,1,0,1,0,1,1,1,0,0,0,1,1,1 |
||||
113 | Table[Mod[Floor[CDF[GompertzMakehamDistribution[0.3,1],x]*1107],2],{x,6/10,5,1/10}] | GompertzMakehamDistribution | 0,0,0,1,0,0,1,1,0,1,1,1,0,1,0,0,0,1,1,0,1,1,0,0,1,0,0,0,1,0,0,0,1,1,0,0,0,1,1,1,0,0,0,0,0 | ||||
114 | Table[Mod[Floor[Erf[(x-1)/78]*15018],2],{x,41,53,1/4}] | wolframalpha.com/input/? | 0,0,0,1,0,0,1,1,0,1,1,1,0,0,1,1,1,0,1,1,0,0,1,0,0,0,1,1,0,0,0,1,0,0,1,1,0,1,1,1,1,1,1,1,0,1,1,0,1 | ||||
115 | Table[Mod[Floor[CDF[ErlangDistribution[5,0.3],x]*2750],2],{x,5/2,14,1/4}] | Mathematica | 0,0,0,1,0,0,1,1,0,1,1,1,0,1,0,1,0,1,0,0,0,0,1,0,1,0,1,0,0,1,0,1,0,1,0,0,1,0,1,0,0,0,0,1,1,1,1 | ||||
116 | Table[Round[ChebyshevT[791,n/633]/2+1/2],{n,622,639}] | wolframalpha.com/input/? | 0,0,0,1,0,0,1,1,0,1,1,1,5070236143583504056,499683199212478775617280257,676089454654707225385249397816767 | ||||
117 | Table[Mod[Floor[N[(SpheroidalQS[2,0,10,x]+2/250)*170367],13],2],{x,-(226771/229000),-0.88,1/229}] | Kugelfunktion zweiter Art wolframalpha.com/input/? |
0,0,0,1,0,0,1,1,0,1,1,1,1,0,0,1,0,1,1,0,1,1,0,0,1,1 | ||||
118 | Table[Mod[Floor[Hyperfactorial[n/4]*762],2],{n,4,44}] | wolframalpha.com/input/? | 0,0,0,1,0,0,1,1,0,1,1,1,0,1,0,0,0,1,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,1,0,1,0,0,1,1,0 | ||||
119 | Table[Mod[Floor[BarnesG[n/4]*684],2],{n,8,44}] | wolframalpha.com/input/? | 0,0,0,1,0,0,1,1,0,1,1,1,0,1,0,0,0,1,0,1,0,0,0,0,0,0,0,1,0,0,1,1,0,0,1,0,0 | ||||
120 | Table[Mod[Round[PolyGamma[n]*535],2],{n,3,44}] | wolframalpha.com/input/? | 0,0,0,1,0,0,1,1,0,1,1,1,1,0,0,1,1,1,0,1,0,1,1,1,1,1,0,1,1,0,0,1,0,0,1,1,1,1,0,1,0,0 | ||||
121 | Table[Mod[Floor[Abs[(z^2+1)/(z^2-1)]*10517],2],{z,-(21/8)-1/2I,-1/2I,1/40}] | 0,0,0,1,0,0,1,1,0,1,1,1,0,1,0,1,0,1,1,0,1,0,0,1,1,0,1,1,1,1,1,0,0,0,0,1,0,0,0,1,0,1,1,1,0,1,1,1,0,0,1,0,1,1,1 | |||||
122 | Take[Mod[FindHamiltonianPath[Graph[#[[1]]\[UndirectedEdge]#[[2]]&/@ (Union[Sort[#]&/@ (Position[Table[IntegerQ[Sqrt[m+n]],{m,119},{n,119}],True])])]],2],{38,80}] |
0,0,0,1,0,0,1,1,0,1,1,1,0,0,1,1,0,1,0,0,1,1,1,0,1,1,0,0,1,0,0,1,1,0,0,1,1,1,0,1,1,1,0 | |||||
123 | Drop[IntegerDigits[Flatten[MatrixFunction[#^19+7#^17+1&,{{1,0,1},{0,1,0},{1,1,1}}]]//FromDigits,2],19] | MatrixFunction | 0,0,0,1,0,0,1,1,0,1,1,1,1,0,0,0,1,1,0,0,1,0,0,1,0,0,0,1 | ||||
124 | Drop[IntegerDigits[Floor[GeoPositionXYZ[Entity["City",{"Berlin","Berlin","Germany"}]][[1]]*100465] //IntegerString//StringJoin//ToExpression,2],10] |
. |
0,0,0,1,0,0,1,1,0,1,1,1,0,1,1,1,1,0,0,1,1,0,0,0,0,0,0,1,0,1,1,1,1,1,1,0,1,0,0,1,1,1,1 | ||||
125 | Mod[Floor[Take[Flatten[QuantityMagnitude[GeoElevationData[Mount Everest mountain, GeoRange->4km,GeoProjection->Automatic]]],{13,55}]],2] |
. |
0,0,0,1,0,0,1,1,0,1,1,1,1,1,0,1,0,1,1,0,0,1,0,0,1,1,1,0,0,0,1,0,0,0,1,1,0,0,0,1,1,1,0 | ||||
126 | Import["WeWishMerryChristmas.mid"...]; Konvert https://de.wikipedia.org/wiki/ABC_(Musiknotation) Table[Mod[WeWishMerryChristmas[[k]]+Floor[(k+58)/k],2],{k,26,Length[WeWishMerryChristmas]}] |
. |
0,0,0,1,0,0,1,1,0,1,1,1,0,0,0,0,1,0,1,0,1,1,1,0,0,1,0,0,0,1,0,1,1,1,1,1,1,1,0,1,0,1,0,0,0,0,1 | ||||
127 | StringPart[" A1B'K2L@CIF/MSP\"E3H9O6R^DJG>NTQ,*5<-U8V.%[$+X!&;:4\\0", ToCharacterCode["⠴⠴⠴⠂⠴⠴⠂⠂⠴⠂⠂⠂"]-10239] |
https://de.wikipedia.org/wiki/Brailleschrift |
0,0,0,1,0,0,1,1,0,1,1,1 | ||||
128 | in= " A AA AAA";Table[char2Braille[StringPart[in, k]]-1,{k, StringLength[in]}] | https://de.wikipedia.org/wiki/Brailleschrift | 0,0,0,1,0,0,1,1,0,1,1,1 | ||||
129 | BarcodeRecognize[\!\(\*GraphicsBox[TagBox[RasterBox[CompressedData[" 1:eJxtkEEOgzAQA72ceEA/wC+49siVvgAk6K2V0kpVfw8hay8giEjwbmIPacZ3 P1cAPvU69cPvntLwf2TRvb7Tc0rtmNs3f2EXI5elbNO+ejmv7O7KpRqHtq4d JO0oj1nFoViCuUykkQmn7JEJgpRbT3yAw/NLiLwKyCYY+a8QieN4fDTkLaow 9RjTvIuJZwELGAnx"], {{0, 20}, {20, 0}}, {0, 1},ColorFunction->GrayLevel], BoxForm`ImageTag["Bit", ColorSpace -> Automatic,Interleaving -> None], Selectable->False],DefaultBaseStyle->"ImageGraphics",ImageSizeRaw->{20, 20}, PlotRange->{{0, 20}, {0, 20}}]\)] |
https://de.wikipedia.org/wiki/DataMatrix-Code |
0,0,0,1,0,0,1,1,0,1,1,1 | ||||
130 | BarcodeRecognize[Import["QR_000100.png"]] | 0,0,0,1,0,0,1,1,0,1,1,1 | |||||
131 | BarcodeRecognize[Import["Code128_000100.png"]] | . |
0,0,0,1,0,0,1,1,0,1,1,1 | ||||
132 | Drop[Flatten[SchurDecomposition[N[{{11,0,0,1},{4,0,0,1},{1,0,2,3},{5,0,0,1}}]]]//Abs//Round //Sign,12] | Mathematica | 0,0,0,1,0,0,1,1,0,1,1,1,0,0,1,1,0,0,0,1 | ||||
Algorithmen mit Nachkommastellen | |||||||
6 | ((43*PI)/1349399).toString().substr(i+2,1) | Iterationsrechner mit Code | 0,0,0,1,0,0,1,1,0,1,1,1,3,1,9,4,5,4,8,9,0,1,0,5,8,1,2,7,8,4,4,1,8 | ||||
7 | Number(GetPiDezi(i+1442,1))%2; //Pi Nachkommastellen Mod 2 | Iterationsrechner mit Code | 0,0,0,1,0,0,1,1,0,1,1,1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0 | ||||
21 | Drop[RealDigits[Pi, 2, 375][[1]],306] (*binäre Pi Nachkommastellen*) | 0,0,0,1,0,0,1,1,0,1,1,1,0,1,1,1,1,0,1,1,1,1,1,0,0,1,0,1,0,1,0,0,0,1,1,0,0,1,1,0,1,1,0,0,1 | |||||
24 | Drop[IntegerDigits[(2^281*43 + 1)/32615343, 2],78] (*ganze Zahl*) | 0,0,0,1,0,0,1,1,0,1,1,1,0,0,0,0,1,1,0,0,0,1,1,1,0,0,0,0,0,1,0,1,0,0,1,0,0,0,1,0,0,1 | |||||
25 | Drop[RealDigits[Pi*6663710/19456209,2,75][[1]],1] | 0,0,0,1,0,0,1,1,0,1,1,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 | |||||
26 | Pi-Pos=28224389850560;aB[i]=Number(('541863910859752494241555455445444').substr(32-i,1))-4; | Iterationsrechner & pi-suche | 0,0,0,1,0,0,1,1,0,1,1,1,-3,0,-2,0,5,0,-2,1,3,5,1,4,-4,-3,5,-1,2,4,-3,0,1 | ||||
27 | Pi-Pos=128917826590;aB[i]=Number(('60079425684445445545550557269761542825').substr(10+i,1))-4; | lamprechts.de../pi-Nachkommastellen-suche | 0,0,0,1,0,0,1,1,0,1,1,1,-4,1,1,3,-2,2,5,3,2,-3,1,0,-2,4,-2,1,-4,-4,-4,-4 | ||||
29 | Pos=11011785426942; GetPiDezi(11011785426942,..) | lamprechts.de../pi-Nachkommastellen-suche | 0,0,0,1,0,0,1,1,0,1,1,1,9,5,9,8,8,4,6,7,8,3,6,0,3,1,6,1,4,8,9,2,0,0,8,1,2,4 | ||||
33 | Pos=11284760662796; GetPiDezi(11284760662796,..) | lamprechts.de../pi-Nachkommastellen-suche | 0,0,0,1,0,0,1,1,0,1,1,1,6,6,8,5,2,1,0,8,2,9,4,0,8,3,6,4,9,1,7,4,6,9,2,8,8 | ||||
41 | Drop[RealDigits[EulerGamma,2,2500][[1]],2467] | https://www.wolframalpha.com/input/? | 0,0,0,1,0,0,1,1,0,1,1,1,0,0,1,0,1,0,1,0,0,0,0,1,0,0,0,0,1,0,1,0,0 | ||||
42 | Drop[RealDigits[Sqrt[2],2,915][[1]],886] | https://www.wolframalpha.com/input/? | 0,0,0,1,0,0,1,1,0,1,1,1,1,1,0,1,0,1,0,0,1,0,1,1,1,1,0,0,0 | ||||
57 | Pos=12585415521704; GetPiDezi(12585415521704,..) | lamprechts.de../pi-Nachkommastellen-suche | 0,0,0,1,0,0,1,1,0,1,1,1,7,2,0,8,6,3,0,4,3,6,8,5,2,8,5,4,7,8,1,0,7,0,2,6,0,7 | ||||
Algorithmen mit Differenzialgleichungen oder numerischer Integration | |||||||
50 | s=DSolve[{y'[x]+y[x]==111*Sin[x],y[0]==1/E},y[x],x];Table[Mod[Ceiling[(N[y[x]/.s[[1]],22])+E^Pi*4],2],{x,114,129,1/2}] | 0,0,0,1,0,0,1,1,0,1,1,1,0,1,1,1,1,0,1,0,1,0,1,1,1,1,0,1,0,1,1 | |||||
53 | m1=13.0000001;m2=13.0000002;m3=13.0000003;nds=NDSolve[{x1'[t]==vx1[t],y1'[t]==vy1[t],x2'[t]==vx2[t], y2'[t]==vy2[t],x3'[t]==vx3[t],y3'[t]==vy3[t],m1 vx1'[t]==-((m1 m2(x1[t]-x2[t]))/((x1[t]-x2[t])^2+(y1[t]-y2[t])^2)^(3/2))-(m1 m3(x1[t]-x3[t]))/((x1[t]-x3[t])^2+(y1[t]-y3[t])^2)^(3/2),m1 vy1'[t]==-((m1 m2(y1[t]-y2[t]))/((x1[t]-x2[t])^2+(y1[t]-y2[t])^2)^(3/2))-(m1 m3(y1[t]-y3[t]))/((x1[t]-x3[t])^2+(y1[t]-y3[t])^2)^(3/2),m2 vx2'[t]==(m1 m2(x1[t]-x2[t]))/((x1[t]-x2[t])^2+(y1[t]-y2[t])^2)^(3/2)-(m2 m3(x2[t]-x3[t]))/((x2[t]-x3[t])^2+(y2[t]-y3[t])^2)^(3/2),m2 vy2'[t]==(m1 m2(y1[t]-y2[t]))/((x1[t]-x2[t])^2+(y1[t]-y2[t])^2)^(3/2)-(m2 m3(y2[t]-y3[t]))/((x2[t]-x3[t])^2+(y2[t]-y3[t])^2)^(3/2),m3 vx3'[t]==(m1 m3(x1[t]-x3[t]))/((x1[t]-x3[t])^2+(y1[t]-y3[t])^2)^(3/2)+(m2 m3(x2[t]-x3[t]))/((x2[t]-x3[t])^2+(y2[t]-y3[t])^2)^(3/2),m3 vy3'[t]==(m1 m3(y1[t]-y3[t]))/((x1[t]-x3[t])^2+(y1[t]-y3[t])^2)^(3/2)+(m2 m3(y2[t]-y3[t]))/((x2[t]-x3[t])^2+(y2[t]-y3[t])^2)^(3/2),x1[0]==0.7,y1[0]==-0.5,x2[0]==-0.7,y2[0]==2,x3[0]==0,y3[0]==0,vx1[0]==0.93240737/2,vy1[0]== 0.86473146/2,vx2[0]==0.93240737/2,vy2[0]==0.86473146/2,vx3[0]==-0.93240737,vy3[0]==-0.86473146},{x1,x2,x3,y1,y2,y3,vx1,vx2,vx3,vy1,vy2,vy3},{t,0,16}]; |
wikipedia.../Dreikörperproblem Mathematica: Drop[Table[Mod [Round[(N[x3[t]/.nds[[1]],14]+ 4)*77],2],{t,0,5,0.07}],40] |
0,0,0,1,0,0,1,1,0,1,1,1,1,1,0,1,1,1,0,0,0,1,0,0,0,0,0,1,1,0,1,0 |
||||
64 | 1-Drop[RealDigits[NIntegrate[x^x, {x,4,5}, WorkingPrecision -> 200],2][[1]],554] | https://www.wolframalpha.com/input/? | 0,0,0,1,0,0,1,1,0,1,1,1,0,0,1,1,1,0,0,0,1,0,1,1,0,0,1,1,0,1,0,1,1,0,0,0,0,0,1,1,1,1,0,1,0,1,1,0,1 | ||||
65 | Drop[Table[Mod[Round[N[ArcLength[{Cos[t (3+Pi/1000)],Sin[3 t]},{t,0,n}],33]*101]+1,2],{n,103.214,131,1.001}],2] | Lissajous Bogenlänge Mathematica | 0,0,0,1,0,0,1,1,0,1,1,1,1,0,0,0,1,0,1,1,0,0,0,0,0,0 | ||||