sin(x) in Wurzelschreibweise (Wertetabelle; >300 Exact Trigonometric values/constants) |
Exakte Sinuswerte aufsteigend sortiert (0...360°) | ||
Winkel x | sin(x) in Wurzelschreibweise (Exact trigonometric constants) | |
[°] | [rad] | i = 0+1i = sqrt(-1) = (-1)^(1/2) = Wurzel(-1) =√(-1) = pow(-1,0.5) |
0 | 0 | 0 |
45/2048=0.02197 | Pi/8192 | √[2-√[2+√[2+√[2+√[2+√[2+√[2+√[2+√[2+√[2+√[2+√[2]]]]]]]]]]]]/2=0.000383495187571395589072461681181381263395026034964738523 |
45/1024=0.0439 | Pi/4096 | sqrt(2-sqrt(2+sqrt(2+sqrt(2+sqrt(2+sqrt(2+sqrt(2+sqrt(2+sqrt(2+sqrt(2+sqrt(2)))))))))))/2=0.0007669903187427045269385683579485 |
45/512=0.087890625 | Pi/2048 | sqrt(2-sqrt(2+sqrt(2+sqrt(2+sqrt(2+sqrt(2+sqrt(2+sqrt(2+sqrt(2+sqrt(2))))))))))/2=0.0015339801862847656123036971502640790799 |
3/32=0.09375 | Pi/1920 | \[Sqrt](1/2-1/2 \[Sqrt](1/2+1/2 \[Sqrt](1/2+1/2 \[Sqrt](1-1/256 (Sqrt[2+Sqrt[2+Sqrt[2]]] (Sqrt[3]-Sqrt[15]+Sqrt[2 (5+Sqrt[5])])-Sqrt[2-Sqrt[2+Sqrt[2]]] (-1 +Sqrt[5]+Sqrt[6 (5+Sqrt[5])]))^2)))) =0.001636245443624047953361802254166792795565946523645330447854655965 |
15/128=0.1171875 | Pi/1536 | a=√[2+√[2+√[2+√[2+√[2+√[2+√[2]]]]]]]; -((-1)^(2/3)/(2^(2/3) (√[2-a]+I √[2+a])^(1/3)))+1/2 (-(1/2))^(1/3) (√[2-a]+I √[2+a])^(1/3) =0.00204530629116409511441305892313213002835565254471080537 |
9/64=0.140625 | Pi/1280 | √[1/2-1/2 √[1/2+1/2 √[1/2+1/2 √[1/2+1/2 √[1/2+1/2 √[1+1/8 (-4+√[2 (4+√[2 (5+√[5])])])]]]]]]=0.002454366796460291713862558702545804098931864 |
45/256=0.17578125 | Pi/1024 | sqrt(2-sqrt(2+sqrt(2+sqrt(2+sqrt(2+sqrt(2+sqrt(2+sqrt(2+sqrt(2)))))))))/2=0.0030679567629659762701453654909198425189446102134 |
3/16=0.1875 | Pi/960 | sqrt(½-½sqrt(½+½sqrt(1-(sqrt(2+sqrt(2+sqrt(2)))(sqrt(½(5+sqrt(5)))/8-sqrt(3)(sqrt(5)-1)/16)-sqrt(2-sqrt(2+sqrt(2)))((sqrt(5)-1)/16+ sqrt(3/2(5+sqrt(5)))/8))²)))=0.003272486506526625459989844900576000217792029325656378279 |
9/32=0.28125 | Pi/640 | sqrt(½-½sqrt(½+½sqrt(½+½sqrt(½+½sqrt(1+(sqrt(2(4+sqrt(2(5+sqrt(5)))))-4)/8)))))=0.0049087188079979905828775693506346970391518728 |
45/128=0.3515625 | Pi/512 | sqrt(2-sqrt(2+sqrt(2+sqrt(2+sqrt(2+sqrt(2+sqrt(2+sqrt(2))))))))/2=0.006135884649154475359640234590372580917057886317391329356 |
3/8=0.375 | Pi/480 | sqrt(½-sqrt(1-(sqrt(2+sqrt(2+sqrt(2)))*(sqrt((5+sqrt(5))/2)/8-sqrt(3)/16(sqrt(5)-1))-sqrt(2-sqrt(2+sqrt(2)))((sqrt(5)-1)/16+sqrt(3/2(5+sqrt(5)))/8))²)/2) =0.00654493796735185837307206889248063420567905677994080 |
9/19=0.473684210.. | Pi/380 | ((-1)^(189/380)-(-1)^(191/380))/2=0.008267254911124917639466369170067325158275245910124001765 |
1/2=0.5 | Pi/360 | ((-1)^(179/360)-(-1)^(181/360))/2=0.008726535498373934964888213973584423034027667688047014652 |
9/16=0.5625 | Pi/320 | sqrt(½-½sqrt(½+½sqrt(½+½sqrt(1+(sqrt(2(4+sqrt(2(5+sqrt(5)))))-4)/8))))=0.009817319337149617498786319201510395858624983585722 |
45/64=0.703125 | Pi/256 | sqrt(2-sqrt(2+sqrt(2+sqrt(2+sqrt(2+sqrt(2+sqrt(2)))))))/2=0.012271538285719926079408261951003212140372319591769250 |
3/4 | Pi/240 | sqrt(2+sqrt(2+sqrt(2)))(sqrt((5+sqrt(5))/128)-sqrt(3)(sqrt(5)-1)/16)-sqrt(2-sqrt(2+sqrt(2)))((sqrt(5)-1)/16+sqrt(3/128(5+sqrt(5)))) |
1 | Pi/180 | sin(1°)=Hypergeometric0F1[3/2,-Pi^2/129600]*Pi/180=(Pi BesselJ[1/2,Pi/180])/(6 Sqrt[10])=(Pi StruveH[-1/2, Pi/180])/(6 Sqrt[10]) =(-1)^(89/180)*(1-(-1)^(1/90))/2=tan(1°)/sqrt(tan(1°)²+1)=0.017452406437283512819418978516316192472252720307139642683 NR:tan(1°)=(i*(sqrt(3)+i)*(x²+1)-(1+i*sqrt(3))*((x-i)*(x+i)²)^(2/3))/(2*((x-i)*(x+i)²)^(1/3))+x; x=tan(3°)=((2-sqrt(3))*(3+sqrt(5))-2)*(2-sqrt(2*(5-sqrt(5))))/4 |
9/8=1.125 | Pi/160 | sqrt(½-½ sqrt(½+½ sqrt(1+(sqrt(2 (4+sqrt(2 (5+sqrt(5)))))-4)/8)))=0.019633692460628302085477279238145208941416745894 |
81/64=1.265625 | Pi*9/1280 | sqrt(½-½sqrt(½+½sqrt(½+½sqrt(½+½sqrt(½+Όsqrt(½(4+sqrt(2(4-sqrt(2(5+sqrt(5))))))))))))=0.02208752701857829050984635209793417499419 |
21/16=1.3125 | Pi*7/960 | sqrt(½-½sqrt(½+½sqrt(1+(sqrt(2(4+sqrt(2(4+sqrt(7-sqrt(5)+sqrt(30-6sqrt(5)))))))-4)/8)))=0.022905443033697137893916949283617503205735804 |
45/34=1.32352 | Pi/136 | sqrt(½-½sqrt(1+1/16(sqrt(2(17-sqrt(17)+sqrt(34-2sqrt(17))+sqrt(2(34+6 sqrt(17)-sqrt(578-34 sqrt(17))+sqrt(34-2sqrt(17))+8sqrt(2(17+sqrt(17)))))))-8))) =1/(2sqrt(-2/(sqrt(8+sqrt(2(17-sqrt(17)+sqrt(34-2sqrt(17))+sqrt(2(34+6sqrt(17)-sqrt(578-34sqrt(17))+sqrt(34-2sqrt(17))+8sqrt(2(17+sqrt(17))))))))-4))) |
45/32=1.40625 | Pi/128 | sqrt(2-sqrt(2+sqrt(2+sqrt(2+sqrt(2+sqrt(2))))))/2=0.02454122852291228803173452945928292506546611923945147757 |
1.5 | Pi/120 | sqrt(2+sqrt(2)) (sqrt(3) (1+sqrt(5))/16-sqrt((5-sqrt(5))/128))-sqrt(2-sqrt(2)) (sqrt(3/128 (5-sqrt(5)))+(1+sqrt(5))/16) |
105/64=1.640625 | Pi*7/768 | sqrt(2-sqrt(2+sqrt(2+sqrt(2+sqrt(2+sqrt(2-sqrt(2-sqrt(3))))))))/2=0.028630395210139003583763793993742419627031409589703 |
9/5=1.8 | Pi/100 | ((-1)^(49/100)-(-1)^(51/100))/2=0.031410759078128293839183673817829389757925705851337927822 |
2 | Pi/90 | ((-1)^(22/45)-(-1)^(23/45))/2=0.03489949670250097164599518162533293735482457604329687142 |
9/4=2.25 | Pi/80 | sqrt(½-½sqrt(1+(sqrt(2(4+sqrt(2(5+sqrt(5)))))-4)/8))=0.0392598157590686090208033637983335896801820 |
81/32=2.53125 | Pi*9/640 | sqrt(½-½sqrt(½+½sqrt(½+½sqrt(½+Όsqrt(½(4+sqrt(2(4-sqrt(2(5+sqrt(5)))))))))))=0.04416427712706735994236374124388319861571 |
18/7=2.5714285 | Pi/70 | ((-1)^(17/35)-(-1)^(18/35))/2 = 0.0448648303505149254580903368019609171338572943490410 |
21/8=2.625 | Pi*7/480 | sqrt(½-½sqrt(1+(sqrt(2(4+sqrt(2(4+sqrt(7-sqrt(5)+sqrt(30-6sqrt(5)))))))-4)/8))=0.04579886693652076924387335224512474492 |
45/17=2.647058823 | Pi/68 | sqrt(8-sqrt(2(17-sqrt(17)+sqrt(34-2sqrt(17))+sqrt(2(34+6sqrt(17)-sqrt(578-34sqrt(17))+sqrt(34-2sqrt(17))+8sqrt(2(17+sqrt(17))))))))/4=0.0461834 |
45/16=2.8125 | Pi/64 | sqrt(2-sqrt(2+sqrt(2+sqrt(2+sqrt(2)))))/2=0.049067674327418014254954976942682658314745363 |
3 | Pi/60 | (1-sqrt(3))*sqrt(5+sqrt(5))/8+sqrt(2)*(sqrt(5)-1)*(sqrt(3)+1)/16=0.052335956242943832722118629609 |
105/32=3.28125 | Pi*7/384 | sqrt(2-sqrt(2+sqrt(2+sqrt(2+sqrt(2-sqrt(2-sqrt(3)))))))/2=0.0572373172875686255557583026508785741584635963586063 |
10/3=3.33.. | Pi/54 | =((-1)^(13/27)-(-1)^(14/27))/2=0.058144828910475828538748016847071523634111413108164759 |
3.515625 | Pi*5/256 | sqrt(2-sqrt(2+sqrt(2+sqrt(2+sqrt(2-sqrt(2-sqrt(2)))))))/2=0.0613207363022085777826145929172350071939802796769731 |
18/5=3.6 | Pi/50 | ((-1)^(12/25)-(-1)^(13/25))/2=0.0627905195293133760761782245656311331224848319 |
15/4=3.75 | Pi/48 | ((-1)^(23/48) - (-1)^(25/48))/2=sqrt(2-sqrt(2+sqrt(2+sqrt(3))))/2=0.06540312923014306681531555877517544144 |
4 | Pi/45 | ((-1)^(43/90) - (-1)^(47/90))/2 =0.069756473744125300775958835194143328600903201652796
= √(1/2-1/2 √(1+(-2+(1-√[5]+√[6(5 +√[5])]+√[2(-14+2√[5]+√[6(5+√[5])]-√[30(5+√[5])])])^(1/3))^2/(8(1-√[5]+√[6(5+√[5])]+√[2(-14+2√[5]+√[6(5+√[5])]-√[30(5+√[5])])])^(1/3))))= |
45/11=4.0909 | Pi/44 | ((-1)^(21/44)-(-1)^(23/44))/2=0.071339183199232340327337752657837932765965152271970595548 |
180/43=4.18604 | Pi/43 | ((-1)^(41/86)-(-1)^(45/86))/2=0.072995314660907525290078630655500235753400780773865381815 |
135/32=4.21875 | Pi*3/128 | Sqrt[1-Sqrt[(1+Sqrt[(1+Sqrt[(1+Sqrt[(1+Sqrt[(1-Sqrt[1/2])/2])/2])/2])/2])/2]^2]=0.073564563599667423529465621575234321813299265677887 |
30/7=4.28571 | Pi/42 | ((-1)^(10/21)-(-1)^(11/21))/2=0.074730093586424254290939745734766653373548755 |
9/2=4.5 | Pi/40 | sqrt((4-sqrt(2*(4+sqrt(2*(5+sqrt(5))))))/2)/2=0.0784590957278449450329602459934596986819558771 |
60/13=4.6153846 | Pi/39 | ((-1)^(37/78)-(-1)^(41/78))/2=0.080466568716725880436232835236050588144454832953483 |
90/19=4.7368421 | Pi/38 | ((-1)^(9/19)-(-1)^(10/19))/2=0.0825793454723323246003439342374402276985836343395 |
180/37=4.864864 | Pi/37 | ((-1)^(35/74)-(-1)^(39/74))/2=0.084805924475509191088501448331898288795307 |
5 | Pi/36 | ((-1)^(17/36) - (-1)^(19/36))/2=0.0871557427476581735580642708374735513777011561497 |
81/16=5.0625 | Pi*9/320 | sqrt(½-½sqrt(½+½sqrt(½+Όsqrt(½(4+sqrt(2(4-sqrt(2(5+sqrt(5))))))))))=0.08824237052036951313688274509922558441693358535834760299990 |
36/7=5.1428571 | Pi/35 | ((-1)^(33/70)-(-1)^(37/70))/2=0.089639308903433499765470436845233008011125767525214568565 |
5.25 | Pi*7/240 | 1/(2sqrt(2/(4-sqrt(2(4+sqrt(2(4+sqrt(7-sqrt(5)+sqrt(30-6sqrt(5))))))))))=0.091501618663402385314002026414647086773215023 |
90/17=5.294117 | Pi/34 | 1/(4 sqrt(2/(15+sqrt(17)-sqrt(2(17-sqrt(17)))-sqrt(2(34+6sqrt(17)+sqrt(2(17-sqrt(17)))-sqrt(34(17-sqrt(17)))+8sqrt(2(17+sqrt(17)))))))) =0.092268359463301995239651107154506480363017283755823 |
60/11=5.4545 | Pi/33 | ((-1)^(31/66)-(-1)^(35/66))/2=0.09505604330418266363210430415931109734405593750457 |
45/8=5.625 | Pi/32 | sqrt(2-sqrt(2+sqrt(2+sqrt(2))))/2=0.0980171403295606019941955638886418458611366731675 |
180/31=5.80645161 | Pi/31 | ((-1)^(29/62)-(-1)^(33/62))/2=0.1011683219874321777860407155854228233862112145 |
6 | Pi/30 | (sqrt((5-sqrt(5))*6)-sqrt(5)-1)/8=0.104528463267653471399834154802498119080655869474593 |
180/29=6.206896 | Pi/29 | ((-1)^(27/58)-(-1)^(31/58))/2=0.1081190184239417630308083269836870058626991245697 |
45/7=6.42857 | Pi/28 | ((-1)^(13/28) - (-1)^(15/28))/2=0.11196447610330785846870593527202420325819642296748 |
105/16=6.5625 | Pi*7/192 | sqrt(2-sqrt(2+sqrt(2+sqrt(2-sqrt(2-sqrt(3))))))/2=0.114286964966846398117474961450939905318013970615076534 |
20/3=6.666 | Pi/27 | ((-1)^(25/54)-(-1)^(29/54))/2=0.1160929141252302296756665233807114688534759 |
6.75 | Pi*3/80 | sqrt(½-Όsqrt(½(4+sqrt(2(4+sqrt(2(5-sqrt(5))))))))=0.117537397457837644105568266840485623672373112095997672 |
90/13=6.9230 | Pi/26 | ((-1)^(6/13)-(-1)^(7/13))/2 auch {0=64x6+32x5-80x4-32x³+24x²+6x-1; x=0.1205366802553230533490676874525435822736811592 } |
7 | Pi*7/180 | sqrt(½-(x)^(1/3)/(8*2^(2/3))+(i sqrt(3)(x)^(1/3))/(8*2^(2/3))-1/(4(2(x))^(1/3))-(i sqrt(3))/(4(2(x))^(1/3)))=0.1218693434051474811128939192315251760
; x=-sqrt(7-sqrt(5)+sqrt(6(5-sqrt(5))))+i sqrt(9+sqrt(5)-sqrt(6(5-sqrt(5)))) |
225/32=7.03125 | Pi*5/128 | sqrt(2-sqrt(2+sqrt(2+sqrt(2-sqrt(2-sqrt(2))))))/2=0.1224106751992161984987044741509457875752236090851 |
36/5=7.2 | Pi/25 | ((-1)^(23/50)-(-1)^(27/50))/2 |
7.5 | Pi/24 | ((-1)^(11/24) - (-1)^(13/24))/2=sqrt(2-sqrt(2+sqrt(3)))/2 |
180/23=7.8260 | Pi/23 | ((-1)^(21/46)-(-1)^(25/46))/2 |
63/8=7.875 | Pi*7/160 | sqrt(½-½ sqrt(½+½ sqrt(1+(sqrt(8-2 sqrt(10-2 sqrt(5)))-4)/8)))=0.1370123416819680379002734968590146410977935668827552409 |
8 | Pi*2/45 | sqrt(½-48/(½((x)+sqrt(((x))^2-y)))^(1/3)-1/768(½((x)+sqrt(((x))^2-y)))^(1/3)); x=1769472-1769472*sqrt(5)+1769472 sqrt(6(5+sqrt(5))); y=200385994162176; oder sqrt(½-48/(192*(-1)^(4/45))-1/768 (192*(-1)^(4/45))) = sqrt[2-(-1)^(4/45)+(-1)^(41/45)]/2 = 1/2 √[-((-2+(1-√[5]+√[6 (5+√[5])] +√[2 (-14+2 √[5]+√[6 (5+√[5])]-√[30 (5+√[5])])])^(1/3))^2/(2 (1-√[5]+√[6 (5+√[5])]+√[2 (-14+2 √[5]+√[6 (5+√[5])]-√[30 (5+√[5])])])^(1/3)))]=0.13917310... |
90/11=8.1818 | Pi/22 | ((-1)^(5/11)-(-1)^(6/11))/2 oder {0=32x^5-16x^4-32x³+12x²+6x-1; x=0.1423148382732851404437926686163696687910 } |
135/16=8.4375 | Pi*3/64 | Sqrt[1 + (-1 - 1/Sqrt[2/(1 + Sqrt[(1 + Sqrt[(1 - 1/Sqrt[2])/2])/2])])/2] =0.14673047445536175165885012964671781970621531652939 } |
60/7=8.5714285 | Pi/21 | ((-1)^(19/42)-(-1)^(23/42))/2=0.14904226617617444692935471527721755690966943899822 |
9 | Pi/20 | (sqrt(2)*(sqrt(5)+1)-2*sqrt(5-sqrt(5)))/8 |
180/19=9.47368421 | Pi/19 | ((-1)^(17/38)-(-1)^(21/38))/2=0.164594590280733894143652059087938419512172483359654123 |
315/32=9.84375 | Pi*7/128 | Sqrt[1-Sqrt[(1+Sqrt[(1+Sqrt[(1+Sqrt[(1-Sqrt[(1+Sqrt[1/2])/2])/2])/2])/2])/2]^2]=0.17096188876030122636364235720826353196632905914459 |
10 | Pi/18 | ((-1)^(4/9) - (-1)^(5/9))/2=cos(80°)=(((-i*sqrt(3)-1)/2)^(2/3)+((i*sqrt(3)-1)/2)^(2/3))/2 oder 0=8x³-6x+1;
x=hyg2F1(7/6,-1/6;1/2;3/4)/2=Im(i^(1/9)) =AppellF1(7/6,1/1000,-503/3000,1/2,3/4,3/4)/2=0.173648177666930348851716626769314796000375677184069387236 |
10.125 | Pi*9/160 | sqrt(½-½sqrt(½+Όsqrt(½(4+sqrt(2(4-sqrt(2(5+sqrt(5)))))))))=0.17579627993435450616338640896138801291928078113214638753 |
10.5 | Pi*7/120 | sqrt(½-1/(4sqrt(2/(4+sqrt(7-sqrt(5)+sqrt(6(5-sqrt(5))))))))=0.18223552549214745660257337143740988295611962462751374 |
180/17=10.588 | Pi/17 | sqrt(2)/8*sqrt(17-sqrt(17)-sqrt(2)*(sqrt(34+6*sqrt(17)+sqrt(2)*(sqrt(17)-1)*sqrt(17-sqrt(17))-8*sqrt(2)*sqrt(17+sqrt(17)))+sqrt(17-sqrt(17)))) |
45/4=11.25 | Pi/16 | ((-1)^(7/16)-(-1)^(9/16))/2=sqrt(2-sqrt(2+sqrt(2)))/2 |
12 | Pi/15 | (sqrt((5+sqrt(5))*2)-sqrt(3)*(sqrt(5)-1))/8=sin(1/3*atan(sqrt(5-2sqrt(5))))=sqrt(7-sqrt(5)-sqrt(6(5-sqrt(5))))/4=0.20791169081775933710174228440512 |
405/32=12.65625 | Pi*9/128 | Sqrt[1-Sqrt[(1+Sqrt[(1+Sqrt[(1-Sqrt[(1-Sqrt[(1+Sqrt[1/2])/2])/2])/2])/2])/2]^2]=0.21910124015686979722773754749735779884836079670559 |
90/7=12.8571 | Pi/14 | ((-1)^(3/7) - (-1)^(4/7))/2=0.222520933956314404288902564496794759466355568764544955311 |
105/8=13.125 | Pi*7/96 | sqrt(2-sqrt(2+sqrt(2-sqrt(2-sqrt(3)))))/2=0.22707626303437320758569669257708808661570144348631699132 |
27/2=13.5 | Pi*3/40 | sqrt(2-sqrt(2+sqrt((5-sqrt(5))/2)))/2=0.233445363855905411767744430202870848785741903887519600 |
180/13=13.846 | Pi/13 | ((-1)^(11/26)*(1-(-1)^(1/13))*(1+(-1)^(1/13)))/2=((-1)^(11/26)-(-1)^(15/26))/2=0.239315 ;sqrt{0=4096x^6-13312x^5+16640x^4-9984x³+2912x²-364x+13} |
14 | Pi*7/90 | sqrt(2-sqrt(2+(-1)^(14/45)-(-1)^(31/45)))/2=0.2419218955996677225604423741003529652950079303987 |
225/16=14.0625 | Pi*5/64 | sqrt(2-sqrt(2+sqrt(2-sqrt(2-sqrt(2)))))/2=0.242980179903263889948274162077471118320990783283832126 |
15 | Pi/12 | (sqrt(3)-1)/sqrt(8)=sqrt(2-sqrt(3))/2=SIN(ARCTAN(1)/3) |
495/32=15.46875 | Pi*11/128 | Sqrt[1-Sqrt[(1+Sqrt[(1+Sqrt[(1-Sqrt[(1-Sqrt[(1-Sqrt[1/2])/2])/2])/2])/2])/2]^2]=0.26671275747489838632528651511643639404211698835616 |
15.75 | Pi*7/80 | sqrt(½-½sqrt(1+(sqrt(8-2sqrt(10-2sqrt(5)))-4)/8))=1/(2sqrt(2/(4-sqrt(2(4+sqrt(2(4-sqrt(2(5-sqrt(5)))))))))) |
180/11=16.3636 | Pi/11 | ((-1)^(9/22) - (-1)^(13/22))/2 auch sqrt{ 0=1024x5-2816x4+2816x³-1232x²+220x-11;x=0.0793732 }=0.28173255684142969771141791534661 |
16.5 | Pi*11/120 | sqrt(1/2-1/(4*sqrt(2/(4+sqrt(7+sqrt(5)-sqrt(6(5+sqrt(5))))))))=0.284015344703922617444389690699185350516107057310255223 |
135/8=16.875 | Pi*3/32 | Sqrt[1-(1+Sqrt[(1+Sqrt[(1-1/Sqrt[2])/2])/2])/2]=0.290284677254462367636192375817395274691476278324151111420667113 |
17 | Pi*17/180 | ((-1)^(73/180)-(-1)^(107/180))/2=0.2923717047227367280974686953771432526646871861826 |
18 | Pi/10 | (sqrt(5)-1)/4=(√5-1)/4=0.30901699437494742410229341718281905886015458990288 |
585/32=18.28125 | Pi*13/128 | Sqrt[1-Sqrt[(1+Sqrt[(1+Sqrt[(1-Sqrt[(1+Sqrt[(1-Sqrt[1/2])/2])/2])/2])/2])/2]^2]=0.313681740398891476656478845994100309993377509456546785193 |
18.75 | Pi*5/48 | sqrt(2-sqrt(2+sqrt(2-sqrt(3))))/2=0.32143946530316158070105762407890158605846445800752915490 |
19 | Pi*19/180 | sqrt(2-sqrt(2+sqrt(2-sqrt(2+(-1)^(14/45)-(-1)^(31/45)))))/2=0.325568154457156668714008935794721571798851606759123107215 |
19.5 | Pi*13/120 | sqrt(1/2-1/(4*sqrt(2/(4+sqrt(7-sqrt(5)-sqrt(6*(5-sqrt(5))))))))=0.3338068592337709288283112855367461082971208424937535 |
315/16=19.6875 | Pi*7/64 | Sqrt[1-Sqrt[(1+Sqrt[(1+Sqrt[(1-Sqrt[(1+Sqrt[1/2])/2])/2])/2])/2]^2]=0.33688985339222005068925321261914757047776677967122228405153 |
20 | Pi/9 | ((-1)^(7/18) (1-(-1)^(1/9)) (1 + (-1)^(1/9)))/2=(-1)^(7/18) (1-(-1)^(2/9))/2=sqrt(½-1/8(1-i*sqrt(3))(½(1+i*sqrt(3)))^(1/3)-1/4(½(1+i*sqrt(3)))^(2/3)) =(abs((i-sqrt(3))^(1/3)-(i+sqrt(3))^(1/3)))/(2^(4/3)) oder 64 x^6-96 x^4+36 x^2-3=0;x=0.342020 |
20.25 | Pi*9/80 | sqrt(½-Όsqrt(½(4+sqrt(2(4-sqrt(2(5+sqrt(5))))))))=0.346117057077492976468214994928212505150789200683309434278 |
21 | Pi*7/60 | 1/(2*sqrt(2/(4-sqrt(7-sqrt(5)+sqrt(6*(5-sqrt(5)))))))=0.358367949545300273484137789413466834191544449460013795463 |
675/32=21.09375 | Pi*15/128 | Sqrt[2-Sqrt[2+Sqrt[2-Sqrt[2+Sqrt[2+Sqrt[2]]]]]]/2=0.35989503653498814877510457232675642020231742112902584976301 |
360/17=21.17647 | Pi*2/17 | sqrt(8-sqrt(2(15+sqrt(17)+sqrt(2(17-sqrt(17)))-sqrt(2(34+6sqrt(17)-sqrt(2(17-sqrt(17)))+sqrt(34(17-sqrt(17)))-8sqrt(2(17+sqrt(17))))))))/4 |
22.5 | Pi/8 | sqrt(2-sqrt(2))/2=0.3826834323650897717284599840303988667613445624856270 |
23 | Pi*23/180 | ((-1)^(67/180)-(-1)^(113/180))/2=0.3907311284892737550620845888890942676180151675764320757471065494 |
24 | Pi*2/15 | (sqrt(3)*(sqrt(5)+1)-sqrt(2)*sqrt(5-sqrt(5)))/8=Sqrt[7+Sqrt[5]-Sqrt[6(5+Sqrt[5])]]/4=0.4067366430758002077539859903414976129231396510661734 |
25 | Pi*5/36 | (-1)^(13/36) (1 - (-1)^(5/18))/2=sqrt(½(4-2/(½(i-sqrt(3)))^(1/3)-2^(2/3)(i-sqrt(3))^(1/3)))/2=0.42261826174069943618697848964773 |
405/16=25.3125 | Pi*9/64 | Sqrt[2-Sqrt[2-Sqrt[2-Sqrt[2+Sqrt[2]]]]]/2=0.4275550934302820943209668568887985343045786293424586393648472 |
25.5 | Pi*17/120 | sqrt(1/2-1/(4*sqrt(2/(4-sqrt(7-sqrt(5)-sqrt(6*(5-sqrt(5))))))))=0.430511096808295144376148356508279487640238425495 |
180/7=25.71 | Pi/7 | ((-1)^(5/14) - (-1)^(9/14))/2 oder {64 x^6-112 x^4+56 x²-7=0} = 0.43388373911755812047576833284835875460999072778745987 |
26 | Pi*13/90 | ((-1)^(16/45) - (-1)^(29/45))/2=0.438371146789077417452734540658265739
0=4096x^12-12288x^10-512x^9+13824x^8+1152x^7-7168x^6-864x^5+1680x^4+248x³-144x²-24x+1; |
26.25 | Pi*7/48 | sqrt(2-sqrt(2-sqrt(2-sqrt(3))))/2=0.442288690219001281995238977324244730156929205571162372150 |
26.71875 | Pi*19/128 | sqrt(1/2-sqrt(1-(1+sqrt(2-sqrt(2+sqrt(2-sqrt(2))))/2)/2)/2)=0.449611329654606600046294579424227075883187 |
27 | Pi*3/20 | (2*sqrt(sqrt(5)+5)-sqrt(2)*(sqrt(5)-1))/8=0.4539904997395467915604083663578711989830477 |
28 | Pi*7/45 | sqrt(½-48/(192 (-1)^(14/45))-1/768 (192 (-1)^(14/45)))=sqrt(½ (1-sin((17 pi)/90)))=0.46947156278589077595946228822784329572321875671119680 |
225/8=28.125 | Pi*5/32 | sqrt(2-sqrt(2-sqrt(2-sqrt(2))))/2=0.4713967368259976485563876259052543776574603189324806214 |
28.5 | Pi*19/120 | sqrt(1/2-1/(4*sqrt(2/(4-sqrt(7+sqrt(5)-sqrt(6*(5+sqrt(5))))))))=0.477158760259608415048863008189386052534488779717814752 |
29 | Pi*29/180 | sqrt(½-(-sqrt(7+sqrt(5)+sqrt(6(5+sqrt(5))))+i*sqrt(9-sqrt(5)-sqrt(6(5+sqrt(5)))))^(1/3)/(4 2^(2/3))-1/(2(2(-sqrt(7+sqrt(5)+ sqrt(6(5+sqrt(5))))+i*sqrt(9-sqrt(5)-sqrt(6(5+sqrt(5))))))^(1/3)))=0.484809620246337029075379622415776568276657476836866465797 |
29.25 | Pi*13/80 | sqrt(1/2-sqrt(2-sqrt(2-sqrt((5-sqrt(5))/2)))/4)=0.488621241496954947420190887838877637253638407109086 |
945/32=29.53125 | Pi*21/128 | Sqrt[2-Sqrt[2-Sqrt[2-Sqrt[2-Sqrt[2-Sqrt[2]]]]]]/2=0.4928981922297840368730266887588092682396873065483635811 |
30 | Pi/6 | 1/2 |
495/16=30.9375 | Pi*11/64 | Sqrt[2-Sqrt[2-Sqrt[2-Sqrt[2-Sqrt[2]]]]]/2=0.5141027441932217265936938389688157726080491204162178042879364539... |
31.5 | Pi*7/40 | ½sqrt(½(4-sqrt(8-2 sqrt(10-2 sqrt(5)))))=0.5224985647159488649878978801782938234153871915232637 |
32 | Pi*8/45 | sqrt(2-sqrt(2-(-1)^(13/45)+(-1)^(32/45)))/2=0.52991926423320495404678115181608666877201754995879996476 |
1035/32=32.34375 | Pi*23/128 | Sqrt[2-Sqrt[2-Sqrt[2-Sqrt[2-Sqrt[2+Sqrt[2]]]]]]/2=0.53499761988709721066307690463701791556026569217190026845567385 |
33 | Pi*11/60 | 1/(2*sqrt(2/(4-sqrt(7+sqrt(5)-sqrt(6*(5+sqrt(5)))))))=0.544639035015027082224083692081565381607904587718763975456... |
135/4=33.75 | Pi*3/16 | sqrt(2-sqrt(2-sqrt(2)))/2=0.5555702330196022247428308139485328743749371907548040459241535282... |
34 | Pi*17/90 | ((-1)^(14/45)-(-1)^(31/45))/2=24/a+a/96=0.5591929034707468301604281399859892873066219403956694
a=48*(-1)^(14/45)=24(1-sqrt(5)-sqrt(6*(5+sqrt(5)))+sqrt(2*(2*sqrt(5)-14-sqrt(6(5+sqrt(5)))+sqrt(30(5+sqrt(5))))))^(1/3) |
34.5 | Pi*23/120 | sqrt(½-1/(4*sqrt(2/(4-sqrt(7-sqrt(5)+sqrt(6*(5-sqrt(5))))))))=0.56640623692483283182162505223376493251868845609981 |
35 | Pi*7/36 | ((-1)^(11/36)-(-1)^(25/36))/2=0.573576436351046096108031912826157864620433371450986... |
1125/32=35.15625 | Pi*25/128 | =Sqrt[2-Sqrt[2-Sqrt[Sqrt[2-Sqrt[2+Sqrt[2]]]+2]]]/2=0.5758081914178453007459724538157308417760084553140966022029889262... |
36 | Pi/5 | sqrt((5-sqrt(5))/8)=0.58778525229247312916870595463907276859765243764314599 |
585/16=36.5625 | Pi*13/64 | Sqrt[2-Sqrt[2-Sqrt[Sqrt[2-Sqrt[2]]+2]]]/2=0.5956993044924333434670365288299698895119263384375047868977947345 |
37.5 | Pi*5/24 | (sqrt(3(2+sqrt(2)))-sqrt(2-sqrt(2)))/4 = sqrt(2-sqrt(2-sqrt(3)))/2=0.6087614290087206394160975428981640045163937119624752300249739679 |
1215/32=37.96875 | Pi*27/128 | Sqrt[2 - Sqrt[2 - Sqrt[Sqrt[2 - Sqrt[2 - Sqrt[2]]] + 2]]]/2 = 0.61523159058062684548491356341398427765943000776442422745446 |
38 | Pi*19/90 | sqrt(2-sqrt(2-sqrt(2+(-1)^(14/45)-(-1)^(31/45))))/2=0.615661475325658279668811092843655628250930871515210 |
270/7=38.571 | Pi*3/14 | cos(2*pi/7)=A116425/2-1={0=8x³+4x²-4x-1}=0.62348980185873353052500488400423981063227473 |
39 | Pi*13/60 | 1/(2*sqrt(2/(4-sqrt(7-sqrt(5)-sqrt(6*(5-sqrt(5)))))))=0.629320391049837452705902458279970426566862412129866 |
315/8=39.375 | Pi*7/32 | Sqrt[2 - Sqrt[2 - Sqrt[2+Sqrt[2]]]]/2=0.6343932841636454982151716132254933706756870948417216064338247 |
40 | Pi*2/9 | (-1)^(5/18)*(1-(-1)^(4/9))/2=0.64278760968653932632264340990726343290755988420568 |
40.5 | Pi*9/40 | sqrt(½(4-sqrt(8-2*sqrt(2(5+sqrt(5))))))/2=0.64944804833018365572632077089376287927750281217191397518 |
1305/32=40.78125 | Pi*29/128 | Sqrt[2 - Sqrt[2 - Sqrt[Sqrt[Sqrt[2 - Sqrt[2]] + 2] + 2]]]/2=0.6531728429537767640842030136563054150768600237141605475133 |
41 | Pi*41/180 | ((-1)^(49/180)-(-1)^(131/180))/2=(-1)^(49/180)(1-(-1)^(41/90))/2=0.656059028990507284782495964023419247519401697870349 |
42 | Pi*7/30 | (1-sqrt(5)+sqrt(6*(5+sqrt(5))))/8=(sqrt(6)*sqrt(5+sqrt(5))-sqrt(5)+1)/8=0.66913060635885821382627333068678047359958321895979 |
675/16=42.1875 | Pi*15/64 | Sqrt[2 - Sqrt[2 - Sqrt[Sqrt[2 + Sqrt[2]] + 2]]]/2=0.671558954847018400625376850427421803228750632199794498883213 |
43.5 | Pi*29/120 | sqrt(1/2-1/(4 sqrt(2/(4-sqrt(7+sqrt(5)+sqrt(6(5+sqrt(5))))))))=0.688354575693753984389256143419612293486469312096 |
1395/32=43.59375 | Pi*31/128 | Sqrt[2-Sqrt[2-Sqrt[Sqrt[Sqrt[2+Sqrt[2]]+2]+2]]]/2=0.68954054473706692461673062995748470284553684427912322586182 |
44 | Pi*11/45 | S=sin(pi/45);C=1-2sin(Pi/90)²;11S*C^10-S^11-165S³*C^8+462S^5*C^6-330S^7*C^4+55S^9*C²=0.6946583704589972866564062994226862299 |
45 | Pi/4 | sqrt(2)/2=1/sqrt(2)=0.7071067811865475244008443621048490392848359376884740 |
45.175097 | Pi*129/514 | Cos[Pi*64/257]=Wurzel_257_Eck.pdf = 0.70711525513316585461586746422502212967021075878814822 |
46 | Pi*23/90 | =cos(11Pi/45)={0=4096x12-12288x10+512x9+13824x8-1152x7-7168x6+864x5+1680x4-248x³-144x²+24x+1}=0.71933980033865113935605467445 |
1485/32=46.40625 | Pi*33/128 | Sqrt[Sqrt[2 - Sqrt[Sqrt[Sqrt[2 + Sqrt[2]] + 2] + 2]] + 2]/2=0.724247082951466920941069243290553167483093004800436880165 |
46.5 | Pi*31/120 | sqrt(1/2+1/(4*sqrt(2/(4-sqrt(7+sqrt(5)+sqrt(6*(5+sqrt(5))))))))=0.725374371012287637993284111189727442263439014961539 |
765/16=47.8125 | Pi*17/64 | Sqrt[Sqrt[2-Sqrt[Sqrt[2+Sqrt[2]]+2]]+2]/2=0.740951125354959091175616897495162729728955309309090045736412 |
48 | Pi*4/15 | cos(7pi/30)=sqrt(7-sqrt(5)+sqrt(6(5-sqrt(5))))/4=0.743144825477394235014697048974256977189113873498026 |
48.59037789 | A197260 | 3/4=0.75 |
1575/32=49.21875 | Pi*35/128 | Sqrt[Sqrt[2 - Sqrt[Sqrt[Sqrt[2 - Sqrt[2]] + 2] + 2]] + 2]/2=0.7572088465064845475754640536057844730404337157316168500555117689... |
49.5 | Pi*11/40 | cos(9pi/40)=sqrt((4+sqrt(2(4-sqrt(2(5+sqrt(5))))))/2)/2=0.76040596560003093817459436484490199988874706603899 |
50 | Pi*5/18 | (-(½))(-1)^(7/9)(1+(-1)^(4/9))=cos(2Pi/9)=(-½ i (sqrt(3)-i))^(1/3)/2+(½ i (sqrt(3)+i))^(1/3)/2=0.766044443118978035202392650555416673935832457 |
405/8=50.625 | Pi*9/32 | Sqrt[Sqrt[2 - Sqrt[2 + Sqrt[2]]] + 2]/2=0.773010453362736960810906609758469800971041292900809609356402896 |
51 | Pi*17/60 | cos(13pi/60)=(W2(W3-1)*(W5+1)+2(W3+1)*sqrt(5-W5))/16=1/(2*sqrt(2/(4+sqrt(7-sqrt(5)-sqrt(6(5-sqrt(5)))))))=0.7771459614569708799799377436724 |
380/7=51.428571 | Pi*2/7 | (-1)^(3/14)*(1-(-1)^(4/7))/2={0=64x6-112 x4+56 x²-7}=0.78183148246802980870844452667405775023233451870868752898 |
1665/32=52.03125 | Pi*37/128 | Sqrt[Sqrt[2 - Sqrt[Sqrt[2-Sqrt[2-Sqrt[2]]]+2]]+2]/2=0.788346427626606262009164705359689282656493137149648650694891738 |
52.5 | Pi*7/24 | (sqrt(3*(2-sqrt(2)))+sqrt(2+sqrt(2)))/4=sqrt(2+sqrt(2-sqrt(3)))/2=0.79335334029123516457977696150129927662867592105191 |
855/16=53.4375 | Pi*19/64 | Sqrt[1/2 + Sqrt[2 - Sqrt[2 + Sqrt[2 - Sqrt[2]]]]/4]=0.8032075314806449098066765129631419238795694271704608349765046543 |
54 | Pi*3/10 | (1+sqrt(5))/4=0.809016994374947424102293417182819058860154589902881431 |
1755/32=54.84375 | Pi*39/128 | Sqrt[Sqrt[2 - Sqrt[Sqrt[2 - Sqrt[2 + Sqrt[2]]] + 2]] + 2]/2=0.8175848131515836965049208841306338094710425175669140941589457 |
55.5 | Pi*37/120 | sqrt(1/2+1/(4*sqrt(2/(4-sqrt(7-sqrt(5)+sqrt(6*(5-sqrt(5))))))))=0.824126188622015661729684903102312058134427949993 |
225/4=56.25 | Pi*5/16 | cos(3Pi/16)=sqrt(2+sqrt(2-sqrt(2)))/2=0.8314696123025452370787883776179057567385608119872 |
57 | Pi*19/60 | cos(11Pi/60)=1/(2sqrt(2/(4+sqrt(7+sqrt(5)-sqrt(6(5+sqrt(5)))))))=0.83867056794542402963759094180454789403950026509592 |
630/11=57.2727 | Pi*7/22 | cos(2*pi/11)={0=32x5+16x4-32x³-12x²+6x+1}=0.8412535328311811688618116489193677175132924984205 |
180/Pi=57.295779 | 1 | Hypergeometric0F1[3/2,-1/4]=Sqrt[Pi/2]*BesselJ[1/2,1]=0.8414709848078965066525023216302989996225630607983710657 |
1845/32=57.65625 | Pi*41/128 | Sqrt[Sqrt[2-Sqrt[2-Sqrt[2-Sqrt[2+Sqrt[2]]]]]+2]/2=0.844853565249707073259571205104957097719785981389108626662621 |
58.5 | Pi*13/40 | cos(7Pi/40)=1/(2sqrt(2/(4+sqrt(2(4-sqrt(2(5-sqrt(5))))))))=0.852640164354092221519383458130412135817266281929 |
=945/16=59.0625 | Pi*21/64 | Sqrt[Sqrt[2 - Sqrt[2 - Sqrt[2 - Sqrt[2]]]] + 2]/2=0.857728610000272069902269984284770137042490799433734018604718542 |
60 | Pi/3 | sqrt(3)/2 = 0.86602540378443864676372317075293618347140262690519 |
1935/32=60.46875 | Pi*43/128 | Sqrt[Sqrt[2-Sqrt[2-Sqrt[2-Sqrt[2-Sqrt[2]]]]]+2]/2 = 0.8700869911087114186522924044838488439108277895298254871093938228 |
61.5 | Pi*41/120 | sqrt(1/2+1/(4*sqrt(2/(4-sqrt(7+sqrt(5)-sqrt(6*(5+sqrt(5))))))))=0.878817112661965374129995143684524799610657309609109 |
495/8=61.875 | Pi*11/32 | Sqrt[Sqrt[2 - Sqrt[2 - Sqrt[2]]] + 2]/2=0.8819212643483550297127568636603883495084426206747279806325386167 |
62 | 31Pi/90 | ((-1)^(7/45)-(-1)^(38/45))/2=cos(7Pi/45)=0.8829475928589269420321713603157193860835366319995
eine Nullstelle von 0=1+24x-144x²-248x^3+1680x^4+864x^5-7168x^6-1152x^7+13824x^8+512x^9-12288x^10+4096x^12 |
63 | Pi*7/20 | sqrt(½(4+sqrt(2(5-sqrt(5)))))/2=0.891006524188367862359709571413626312770518519036... |
2025/32=63.28125 | Pi*45/128 | Sqrt[Sqrt[2-Sqrt[2-Sqrt[Sqrt[2-Sqrt[2]]+2]]]+2]/2=0.89322430119551532034241644749339797800062558899887278960793346 |
64 | Pi*16/45 | sqrt(½+48/(192*(-1)^(13/45))+1/768*(192*(-1)^(13/45)))=0.89879404629916699278229567669578535492997341381842... |
64.5 | Pi*43/120 | sqrt(1/2 + 1/(4 sqrt(2/(4 - sqrt(7 - sqrt(5) - sqrt(6 (5 - sqrt(5))))))))=0.9025852843498606067626451490957717568163838270992085 |
1035/16=64.6875 | Pi*23/64 | Sqrt[Sqrt[2 - Sqrt[2 - Sqrt[2 + Sqrt[2]]]] + 2]/2=0.9039892931234433315862002972305370487101320250506080496646735759 |
66 | Pi*11/30 | cos(2Pi/15)=(1+sqrt(5)+sqrt(6(5-sqrt(5))))/8=0.913545457642600895502127571985317177940810459377474 |
2115/32=66.09375 | Pi*47/128 | Sqrt[Sqrt[2 - Sqrt[2 - Sqrt[Sqrt[2 + Sqrt[2]] + 2]]] + 2]/2=0.914209755703530654635014829393577401044691115682177001356566241 |
135/2=67.5 | Pi*3/8 | sqrt(2+sqrt(2))/2 |
1170/17=68.8235 | Pi*13/34 | [sqrt(17)-1+sqrt(34-2sqrt(17))+sqrt{68+12sqrt(17)+2(sqrt(17)-1)sqrt(34-2sqrt(17))-16sqrt(34+2sqrt(17))}]/16=0.932472229404355804573115891821
=cos(2Pi/17)=Nullstelle von 256x8+128x7-448x6-192x5+240x4+80x3-40x²-8x+1 Wikipedia: 17-Eck |
2205/32=68.90625 | Pi*49/128 | Sqrt[Sqrt[Sqrt[2-Sqrt[Sqrt[2+Sqrt[2]]+2]]+2]+2]/2=0.9329927988347388877116602555433024982950155205122950488923147712 |
69 | Pi*23/60 | cos(7Pi/60)=1/(2sqrt(2/(4+sqrt(7-sqrt(5)+sqrt(6(5-sqrt(5)))))))=0.933580426497201748990043063139570741405965268537466 |
70 | Pi*7/18 | cos(Pi/9)={0=8x³-6x-1}=1/(2^(2/3)(k=1+i*sqrt(3))^(1/3))+(k/2)^(1/3)/2=0.939692620785908384054109277324731469936208134264464 |
1125/16=70.3125 | Pi*25/64 | Sqrt[Sqrt[Sqrt[2 - Sqrt[2+Sqrt[2]]]+2]+2]/2=0.9415440651830207784125094025995023571855897958251828675468258789 |
70.5 | Pi*47/120 | sqrt(1/2+1/(4 sqrt(2/(4+sqrt(7-sqrt(5)-sqrt(6 (5-sqrt(5))))))))=0.9426414910921783947771677362823118828448666906665 |
2295/32=71.71875 | Pi*51/128 | Sqrt[1/2 +Sqrt[1+(-1+Sqrt[2-Sqrt[2+Sqrt[2-Sqrt[2]]]]/2)/2]/2]=0.9495281805930366671959360741893450282522241538324108524439709653 |
72 | Pi*2/5 | sqrt((5+sqrt(5))/8)=0.9510565162951535721164393333793821434056986341257502 |
585/8=73.125 | Pi*13/32 | Sqrt[Sqrt[Sqrt[2 - Sqrt[2]] + 2] + 2]/2=0.9569403357322088649357978869802699694828492056300372613012071998 |
73.5 | Pi*49/120 | sqrt(1/2 + 1/(4 sqrt(2/(4 + sqrt(7 + sqrt(5) - sqrt(6 (5 + sqrt(5))))))))=0.95881973486819304976102854139259829104918091884905898 |
2385/32=74.53125 | Pi*53/128 | Sqrt[Sqrt[Sqrt[2 - Sqrt[2-Sqrt[2-Sqrt[2]]]]+2]+2]/2=0.9637760657954398666864643555078351536630838488266327043089160414 |
75 | Pi*5/12 | (1+sqrt(3))/sqrt(8)=0.965925826289068286749743199728897367633904839008404550402343 |
1215/16=75.9375 | Pi*27/64 | Sqrt[Sqrt[Sqrt[2 - Sqrt[2 - Sqrt[2]]] + 2] + 2]/2=0.9700312531945439926039842072861002514568659622480741009834974506 |
76 | Pi*19/45 | sqrt(2+sqrt(2+(-1)^(14/45)-(-1)^(31/45)))/2=0.970295726275996472306377874033990377632260852443082915 |
76.5 | Pi*17/40 | cos(3Pi/40)=sqrt(½(4+sqrt(2(4+sqrt(2(5-sqrt(5)))))))/2=0.972369920397676601833645834118797644002576369406261 |
540/7=77.142857 | Pi*3/7 | cos(Pi/14)=(-1)^(1/14)*(1-(-1)^(6/7))/2={0=64x6-112 x4+56 x²-7}=0.974927912181823607018131682993931217232785800619997 |
2475/32=77.34375 | Pi*55/128 | Sqrt[Sqrt[Sqrt[2 - Sqrt[2 - Sqrt[2 + Sqrt[2]]]]+2]+2]/2=0.9757021300385285444603957664195279716440122657920431654131848601 |
78 | Pi*13/30 | cos(Pi/15)=(sqrt(5)-1+sqrt(6(5+sqrt(5))))/8=0.978147600733805637928566747869599532459737808862677 |
315/4=78.75 | Pi*7/16 | cos(Pi/16)=sqrt(2+sqrt(2+sqrt(2)))/2=0.9807852804032304491261822361342390369739337308933360950029160885... |
79.5 | Pi*53/120 | sqrt(1/2+1/(4 sqrt(2/(4+sqrt(7-sqrt(5)+sqrt(6 (5-sqrt(5))))))))=0.9832549075639545845546320564305089875746236546656674825 |
80 | Pi*4/9 | (-1)^(1/18)*(1-(-1)^(8/9))/2=1/2 Sqrt[2+1/(1/2 (1+I Sqrt[3]))^(1/3)+(1/2 (1+I Sqrt[3]))^(1/3)]=0.98480775301220805936674302458952301367064325... |
2565/32=80.15625 | Pi*57/128 | Sqrt[Sqrt[Sqrt[Sqrt[2 - Sqrt[2+Sqrt[2]]]+2]+2]+2]/2=0.9852776423889412447740184331785477871601291558128148744442534259... |
81 | Pi*9/20 | sqrt(½(4+sqrt(2(5+sqrt(5)))))/2=0.98768834059513772619004024769343726075840686158988043492 |
1305/16=81.5625 | Pi*29/64 | Sqrt[Sqrt[Sqrt[Sqrt[2 - Sqrt[2]] + 2] + 2] + 2]/2=0.9891765099647809734516737380162430639836895333369074010191503644 |
82.5 | Pi*11/24 | sqrt(2+sqrt(2+sqrt(3)))/2=0.9914448613738104111445575269285628712777382744481022714587746035... |
2655/32=82.96875 | Pi*59/128 | Sqrt[Sqrt[Sqrt[Sqrt[2 - Sqrt[2 - Sqrt[2]]] + 2] + 2] + 2]/2=0.992479534598709998156767251661117820010820654634159546490709278... |
84 | Pi*7/15 | cos(pi/30)=sqrt(7+sqrt(5)+sqrt(6 (5+sqrt(5))))/4=0.994521895368273336922691944980570381520792088709319 |
675/8=84.375 | Pi*15/32 | cos(Pi/32)=Sqrt[Sqrt[Sqrt[2 + Sqrt[2]] + 2] + 2]/2=0.9951847266721968862448369531094799215754748687298570618336129657 |
85.5 | Pi*19/40 | cos(pi/40)=½sqrt(½(4+sqrt(2(4+sqrt(2(5+sqrt(5)))))))=sqrt(2+sqrt(2+sqrt(½(5+sqrt(5)))))/2=0.99691733373312797619777340874204442015892688 |
2745/32=85.78125 | Pi*61/128 | Sqrt[Sqrt[Sqrt[Sqrt[Sqrt[2 - Sqrt[2]] + 2] + 2] + 2] + 2]/2=0.997290456678690216135597140182567821171688679166221373207578524 |
1470/17=86.470588.. | Pi*49/102 | cos(Pi/51)=sin(Pi*49/102)=(Sqrt[3(17+Sqrt[17]+Sqrt[2(17+Sqrt[17])]-2Sqrt[17-3Sqrt[17]-Sqrt[170-38Sqrt[17]]])]+Sqrt[15-Sqrt[17]-Sqrt[2(17+Sqrt[17])]+ 2Sqrt[17-3Sqrt[17]-Sqrt[170-38Sqrt[17]]]])/(8Sqrt[2]) = 0.99810332873704407815955807227985384753930476975299 = |
87 | Pi*29/60 | cos(pi/60)=1/(2sqrt(2/(4+sqrt(7+sqrt(5)+sqrt(6(5+sqrt(5)))))))=0.998629534754573873784492058439436580590952290767785 |
1395/16=87.1875 | Pi*31/64 | cos(pi/64)=Sqrt[2 + Sqrt[2 + Sqrt[2 + Sqrt[2 + Sqrt[2]]]]]/2=0.998795456205172392714771604759100694443203614704611794342817 |
88.5 | Pi*59/120 | (sqrt(30-9sqrt(10))+sqrt(30+3sqrt(10))-sqrt(10+3sqrt(10))+sqrt(10-sqrt(10))+sqrt(30-15sqrt(2))+sqrt(10+5sqrt(2))+sqrt(6-3sqrt(2))+sqrt(2+sqrt(2)))/16 =((-1)^(1/120) - (-1)^(119/120))/2=0.9996573249755572800367608883676798759498759712410784612 |
2835/32=88.59375 | Pi*63/128 | cos(Pi/128)=Sqrt[2+Sqrt[2+Sqrt[2+Sqrt[2+Sqrt[2+Sqrt[2]]]]]]/2=0.9996988186962042201157656496661721968500610812577296246441237879 |
88.5992... | Pi*253/514 | sin(253Pi/514)=sin(261Pi/514)=Cos[Pi*2/257]=cos_2Pid257_Eck.SVG=cos_2Pid257_Eck_nurFormelFuer_LaTex_War.tex |
90 | Pi/2 | 1 |
2925/32=91.40625 | Pi*65/128 | cos(Pi/128)=Sqrt[2+Sqrt[2+Sqrt[2+Sqrt[2+Sqrt[2+Sqrt[2]]]]]]/2=0.9996988186962042201157656496661721968500610812577296246441237879 |
1485/16=92.8125 | Pi*33/64 | cos(pi/64)=Sqrt[2 + Sqrt[2 + Sqrt[2 + Sqrt[2 + Sqrt[2]]]]]/2=0.9987954562051723927147716047591006944432036147046117943428170736 |
3015/32=94.21875 | Pi*67/128 | Sqrt[Sqrt[Sqrt[Sqrt[Sqrt[2 - Sqrt[2]] + 2] + 2] + 2] + 2]/2=0.997290456678690216135597140182567821171688679166221373207578524 |
765/8=95.625 | Pi*17/32 | cos(Pi/32)=Sqrt[Sqrt[Sqrt[2 + Sqrt[2]] + 2] + 2]/2=0.995184726672196886244836953109479921575474868729857061833612965 |
3105/32=97.03125 | Pi*69/128 | Sqrt[Sqrt[Sqrt[Sqrt[2 - Sqrt[2 - Sqrt[2]]] + 2] + 2] + 2]/2=0.992479534598709998156767251661117820010820654634159546490709278 |
1575/16=98.4375 | Pi*35/64 | Sqrt[Sqrt[Sqrt[Sqrt[2 - Sqrt[2]] + 2] + 2] + 2]/2=0.9891765099647809734516737380162430639836895333369074010191503644 |
3195/32=99.84375 | Pi*71/128 | Sqrt[Sqrt[Sqrt[Sqrt[2 - Sqrt[2+Sqrt[2]]]+2]+2]+2]/2=0.9852776423889412447740184331785477871601291558128148744442534259 |
100 | Pi*5/9 | -(-1)^(17/18)*(1+(-1)^(1/9))/2 |
405/4=101.25 | Pi*9/16 | cos(Pi/16)=sqrt(2+sqrt(2+sqrt(2)))/2=0.9807852804032304491261822361342390369739337308933360950029160885 |
3285/32=102.65625 | Pi*73/128 | Sqrt[Sqrt[Sqrt[2 - Sqrt[2 - Sqrt[2 + Sqrt[2]]]]+2]+2]/2=0.97570213003852854446039576641952797164401226579204316541318486 |
720/7=102.8571 | Pi*4/7 | -(-1)^(13/14)*(1+(-1)^(1/7))/2=0.974927912181823607018131682993931217232785800619997437648 |
1665/16=104.0625 | Pi*37/64 | Sqrt[Sqrt[Sqrt[2 - Sqrt[2 - Sqrt[2]]] + 2] + 2]/2=0.97003125319454399260398420728610025145686596224807410098349745... |
105 | Pi*7/12 | (1+sqrt(3))/sqrt(8)=0.96592582628906828674974319972889736763390483900840455040234307631... |
3375/32=105.46875 | Pi*75/128 | Sqrt[Sqrt[Sqrt[2 - Sqrt[2-Sqrt[2-Sqrt[2]]]]+2]+2]/2=0.9637760657954398666864643555078351536630838488266327043089160414... |
855/8=106.875 | Pi*19/32 | Sqrt[Sqrt[Sqrt[2 - Sqrt[2]] + 2] + 2]/2=0.9569403357322088649357978869802699694828492056300372613012071998... |
108 | Pi*3/5 | sqrt((5+sqrt(5))/8)=sin(Pi*2/5)=0.9510565162951535721164393333793821434056986341257502 |
3465/32=108.28125 | Pi*77/128 | Sqrt[1/2 +Sqrt[1+(-1+Sqrt[2-Sqrt[2+Sqrt[2-Sqrt[2]]]]/2)/2]/2]=0.9495281805930366671959360741893450282522241538324108524439709653... |
1755/16=109.6875 | Pi*39/64 | Sqrt[Sqrt[Sqrt[2 - Sqrt[2+Sqrt[2]]]+2]+2]/2=0.9415440651830207784125094025995023571855897958251828675468258789... |
3555/32=111.09375 | Pi*79/128 | Sqrt[Sqrt[Sqrt[2-Sqrt[Sqrt[2+Sqrt[2]]+2]]+2]+2]/2=0.9329927988347388877116602555433024982950155205122950488923147712... |
112.5 | Pi*5/8 | sqrt(2+sqrt(2))/2=0.92387953251128675612818318939678828682241662586364248611509773128... |
3645/32=113.90625 | Pi*81/128 | Sqrt[Sqrt[2 - Sqrt[2 - Sqrt[Sqrt[2 + Sqrt[2]] + 2]]] + 2]/2=0.914209755703530654635014829393577401044691115682177001356566241... |
1845/16=115.3125 | Pi*41/64 | Sqrt[Sqrt[2 - Sqrt[2 - Sqrt[2 + Sqrt[2]]]] + 2]/2=0.9039892931234433315862002972305370487101320250506080496646735759... |
3735/32=116.71875 | Pi*83/128 | Sqrt[Sqrt[2-Sqrt[2-Sqrt[Sqrt[2-Sqrt[2]]+2]]]+2]/2=0.8932243011955153203424164474933979780006255889988727896079334615... |
945/8=118.125 | Pi*21/32 | Sqrt[Sqrt[2 - Sqrt[2 - Sqrt[2]]] + 2]/2=0.8819212643483550297127568636603883495084426206747279806325386167... |
3825/32=119.53125 | Pi*85/128 | Sqrt[Sqrt[2-Sqrt[2-Sqrt[2-Sqrt[2-Sqrt[2]]]]]+2]/2=0.8700869911087114186522924044838488439108277895298254871093938228... |
120 | Pi*2/3 | sqrt(3)/2 |
1935/16=120.9375 | Pi*43/64 | Sqrt[Sqrt[2 - Sqrt[2 - Sqrt[2 - Sqrt[2]]]] + 2]/2=0.8577286100002720699022699842847701370424907994337340186047185423... |
3915/32=122.34375 | Pi*87/128 | Sqrt[Sqrt[2-Sqrt[2-Sqrt[2-Sqrt[2+Sqrt[2]]]]]+2]/2=0.8448535652497070732595712051049570977197859813891086266626210143... |
495/4=123.75 | Pi*11/16 | cos(3Pi/16)=sqrt(2+sqrt(2-sqrt(2)))/2=0.8314696123025452370787883776179057567385608119872499634461245902... |
4005/32=125.15625 | Pi*89/128 | Sqrt[Sqrt[2 - Sqrt[Sqrt[2 - Sqrt[2 + Sqrt[2]]] + 2]] + 2]/2=0.8175848131515836965049208841306338094710425175669140941589457011... |
126 | Pi*7/10 | (1+sqrt(5))/4=sin(Pi*3/10)=0.809016994374947424102293417182819058860154589902881431 |
2025/16=126.5625 | Pi*45/64 | Sqrt[1/2 + Sqrt[2 - Sqrt[2 + Sqrt[2 - Sqrt[2]]]]/4]=0.8032075314806449098066765129631419238795694271704608349765046543 |
900/7=128.571 | Pi*5/7 | -(-1)^(11/14)*(1 + (-1)^(3/7))/2 |
135 | Pi*3/4 | sqrt(2)/2=1/sqrt(2)=sin(Pi/4)=0.7071067811865475244008443621048490392848359376884740 |
144 | Pi*4/5 | sqrt((5-sqrt(5))/8)=sin(Pi/5)=0.58778525229247312916870595463907276859765243764314599 |
150 | Pi*5/6 | 1/2 |
152 | Pi*38/45 | sin(28°)=sin(pi*7/45) siehe oben |
157.5 | Pi*7/8 | sqrt(2-sqrt(2))/2=sin(Pi/8)=0.3826834323650897717284599840303988667613445624856270 |
162 | Pi*9/10 | (sqrt(5)-1)/4 |
165 | Pi*11/12 | (sqrt(3)-1)/sqrt(8) |
170 | Pi*17/18 | sin(10°)=cos(80°)=((-1)^(4/9)-(-1)^(5/9))/2=0.173648177666930348851716626769314796000 |
180 | Pi | 0 |
195 | Pi*13/12 | (1-sqrt(3))/sqrt(8) |
198 | Pi*11/10 | (1-sqrt(5))/4 |
200 | Pi*10/9 | ((-1)^(11/18)-(-1)^(7/18))/2=-sin(Pi/9)=-0.34202014332566873304409961468225958076308336751416062 |
202.5 | Pi*9/8 | -sqrt(2-sqrt(2))/2=((-1)^(5/8)-(-1)^(3/8))/2=-sin(Pi/8)=-0.382683432365089771728459984030398866761344562485627 |
1440/7=205.71428 | Pi*8/7 | ((-1)^(9/14)-(-1)^(5/14))/2=-sin(Pi/7)=-0.43388373911755812047576833284835875460999072778745987 |
210 | Pi*7/6 | -1/2 |
216 | Pi*6/5 | -sqrt((5-sqrt(5))/8)=-sin(Pi/5)=-0.58778525229247312916870595463907276859765243764314599 |
220 | Pi*11/9 | (-1)^(5/18)*((-1)^(4/9)-1)/2=((-1)^(13/18)-(-1)^(5/18))/2=-sin(Pi*2/9)=-0.6427876096865393263226434099072634329075598842 |
225 | Pi*5/4 | -sqrt(2)/2 |
1620/7=231.42857.. | Pi*9/7 | ((-1)^(11/14)-(-1)^(3/14))/2=-cos(Pi*3/14)=-0.7818314824680298087084445266740577502323345187 |
234 | Pi*13/10 | -(sqrt(5)+1)/4 |
240 | Pi*4/3 | -sqrt(3)/2 |
247.5 | Pi*11/8 | -sqrt(2+sqrt(2))/2 |
252 | Pi*7/5 | -sqrt((5+sqrt(5))/8)=-sin(Pi*2/5)=-0.9510565162951535721164393333793821434056986341257502 |
255 | Pi*17/12 | (-1-sqrt(3))/sqrt(8)=-0.96592582628906828674974319972889736763390483900840455 |
1800/7=257.142857.. | Pi*10/7 | 2*sin(pi/28)²-1=-cos(Pi/14)=((-1)^(13/14)-(-1)^(1/14))/2=-0.97492791218182360701813168299393121723278580061999 |
260 | Pi*13/9 | -cos(Pi/18)=((-1)^(17/18)-(-1)^(1/18))/2=-0.98480775301220805936674302458952301367064325 |
270 | Pi*3/2 | -1 |
280 | Pi*14/9 | -cos(Pi/18)=((-1)^(17/18)-(-1)^(1/18))/2=-0.98480775301220805936674302458952301367064325 |
1980/7=282.857.. | Pi*11/7 | =-cos(Pi/14)=((-1)^(13/14)-(-1)^(1/14))/2=-0.97492791218182360701813168299393121723278580061999 |
285 | Pi*19/12 | -(1+sqrt(3))/(2 sqrt(2)) |
288 | Pi*8/5 | -sqrt((5+sqrt(5))/8)=-sin(Pi*2/5)=-0.9510565162951535721164393333793821434056986341257502 |
292.5 | Pi*13/8 | -cos(Pi/8)=-sqrt(2+sqrt(2))/2=-0.923879532511286756128183189396788286822416625863642486 |
300 | Pi*5/3 | -sqrt(3)/2=-0.8660254037844386467637231707529361834714026269051903140 |
306 | Pi*17/10 | -(1+sqrt(5))/4=-sin(Pi*3/10)=-0.809016994374947424102293417182819058860154589902881431 |
315 | Pi*7/4 | -1/sqrt(2)=-sin(Pi/4)=-0.7071067811865475244008443621048490392848359376884740 |
324 | Pi*9/5 | -sqrt((5-sqrt(5))/8)=-sin(Pi/5)=-0.58778525229247312916870595463907276859765243764314599 |
337.5 | Pi*15/8 | -sqrt(2-sqrt(2))/2=-sin(Pi/8)=-0.3826834323650897717284599840303988667613445624856270 |
342 | Pi*19/10 | (1-sqrt(5))/4=-0.3090169943749474241022934171828190588601545899028814310 |
345 | Pi*23/12 | -sqrt(2-sqrt(3))/2=(1-sqrt(3))/sqrt(8)=-0.258819045102520762348898837624048328349068901319930513 |
350 | Pi*35/18 | ((-1)^(5/9)-(-1)^(4/9))/2=-sin(Pi/18)=-0.173648177666930348851716626769314796000375677184069387236 |
357 | Pi*119/60 | -sin(Pi/60)=(sqrt(3)-1)*sqrt(5+sqrt(5))/8-sqrt(2)*(sqrt(5)-1)*(sqrt(3)+1)/16=-0.052335956242943832722118629609078418731 |
360 | Pi*2 | 0 |
3960/Pi=1260.5.. | 22 | -sin(22-7Pi)=2cos(11)*sin(11)=3sin(22/3)-4sin(22/3)³=22*0F1[1/2,-11²/4]*0F1[3/2,-11²/4]=(7Pi-22)*0F1[3/2,-(22-7Pi)²/4]=sin(22 rad) 14400 digits |
cos(x)=sin(x+pi/2)=sin(pi/2-x)=1-2*sin(x/2)²=(exp(-x*i)+exp(x*i))/2=(sin(y+x)+sin(y-x))/(2sin(y)); vergl. http://www.selasky.org/hans_petter/math/binary_cosinus/ | ||
cos(x)=sgn(sin(x+Pi/2))*sqrt(1-sin(x)²) ; sgn(cos(x+PI/2))=sgn(((abs(x)%(2*PI))-PI)*x)=SquareWave(-x/Pi/2) | ||
tan(x)=sgn(cos(x))*sin(x)/sqrt(1-sin(x)²) ; sgn(cos(x))=sgn(((abs(x)+3*PI/2)%(2*PI))-PI)=SquareWave(x/2/PI+1/4) | ||
cot(x)=sgn(cos(x))*sqrt(1-sin(x)²)/sin(x) | ||
sin(13x)=13*sin(x) - 364*sin(x)^3 + 2912*sin(x)^5 - 9984*sin(x)^7 +16640*sin(x)^9 - 13312*sin(x)^11 + 4096*sin(x)^13 | ||
sin(11x)=11*sin(x) - 220*sin(x)^3 + 1232*sin(x)^5 - 2816*sin(x)^7 +2816*sin(x)^9 - 1024*sin(x)^11 | ||
sin(7x) = 7*sin(x)-56*sin(x)³+112*sin(x)^5-64*sin(x)^7 | ||
sin(5x)=sin(x)*(5-20*sin(x)²+16*sin(x)^4) | ||
sin(3x)=3*sin(x)-4*sin(x)³ | ||
tan(3x)=(3tan(x)-tan(x)³)/(1-3tan(x)²) | ||
sin(2x)=2*sin(x)*cos(x)=2*sin(x)*sqrt(1-sin(x)²)=sqrt(4*sin(x)²*(1-sin(x)²)) {0...Pi/2} | ||
sin(x)=3sin(x/3)-4sin(x/3)³=sqrt(4*sin(x/2)²*(1-sin(x/2)²))=sqrt(½-sqrt(1-sin(2*x)²)/2) {0 Pi/2} | ||
sin(x/2)=3sin(x/6)-4sin(x/6)³=sqrt(4*sin(x/4)²*(1-sin(x/4)²))=sqrt(½-sqrt(1-sin(x)²)/2) {0 Pi/2} | ||
sin(1/3*atan(1))=(sqrt(3)-1)/(2 sqrt(2))=sqrt(2-sqrt(3))/2 | ||
sin(1/3*atan(sqrt(5-2 sqrt(5))))=sqrt(7-sqrt(5)-sqrt(6 (5-sqrt(5))))/4 | ||
sin(½*atan(x))=x/(sqrt(2)*sqrt(x²+1)*sqrt(1/sqrt(x²+1)+1)) | ||
sin(atan(x))=x/sqrt(x²+1) | ||
sin(2*atan(x))=(2 x)/(x²+1) | ||
sin(3*atan(x))=(3 x-x³)/(x²+1)^(3/2) | ||
sin(4*atan(x))=(4
(x-x³))/(x²+1)² sin(5*atan(x)) = (5 x-10 x^3+x^5)/(1+x²)^(5/2) sin(6*atan(x)) =((6 x-20 x^3+6 x^5))/(1+x²)^(6/2) sin(7*atan(x)) =(7 x-35 x^3+21 x^5-x^7)/(1+x²)^(7/2) |
||
(pi+i)^(1/3) = (1+pi²)^(1/6)*cos(1/3*atan(1/pi))+i*(1+pi²)^(1/6)*sin(1/3*atan(1/pi)) | ||
dgms+((x^3+x)²+(x²+1)²)^(1/3) cos(1/3 atan(1/x))² = x²+1 | ||
atan(x)=2*atan((sqrt(x²+1)-1)/x)=atan(y)+atan((x-y)/(x*y+1)) | ||
tan(3*asin(x))=(4 x³-3 x)/(sqrt(1-x) sqrt(1+x) (-1+4*x²)) | ||
atan(1/tan(1/(x)))/3=pi/6-1/(3*x) fόr x>1/3 | ||
sin(pi/x)=((-1)^((x/2-1)/x) - (-1)^((x/2+1)/x))/2 | ||
sin(x+y) = sin(x)*cos(y) + cos(x)*sin(y) = sin(x)*sqrt(1-sin(y)²) + sqrt(1-sin(x)²)*sin(y) wenn -Pi/2 <= x <= Pi/2 | ||
cos(x+y)*cos(x-y)=cos(y)²-sin(x)²=cos(y)²+cos(x)²-1=1-sin(x)²-sin(y)² | ||
n*sin(x)+k*cos(x) = sqrt(n²+k²)*sin(x+atan(k/n)) | ||
sin(x-y) = sin(x)*cos(y) - cos(x)*sin(y) = sin(x)*sqrt(1-sin(y)²) - sqrt(1-sin(x)²)*sin(y) | ||
atan(1/sqrt(x²-1)) = sgn(-x)*acos(1/x)+sgn(x)*(PI/2) fόr |x|>1 | ||
Pi=2*(acos(1/x)+atan(1/sqrt(x*x-1))) |x|>1; x=13/5 ist Pi=(acos(5/13)+atan(5/12))*2 | ||
[cos(x)+ i * sin(x)]^n = e^(i*x)^n=e^(i*nx) = cos(n*x)+ i * sin(n*x) Satz von de Moivre mit Eulerformel | ||